Future trends of
applications of CFD to
industrial design

Fully-resolved LES (Large Eddy

__Simulation

B Resolve such eddies that are responsible for
production of turbulence in TBL
> A *=300, A,*= 30, A,* =150

B Only model eddies in dissipation scale, thus
most reliable

B Provide as accurate solution as DNS as long
as flow of interest is properly resolved, with
approximately a 1/100 cost of DNS




 How small are the active eddies in @&
" C

B Flat-plate turbulent boundary layer at I = 1m

1x10° 37mm 51mm 0.140
1x10° 25mm 600 um 0.026

1x107 15mm 77 um  0.005

6: Thickness of boundary layer
d: Scale of active eddies in TBLm

B Automobile aerodynamics
» Free-stream velocity: 30 m/s
» Length scale:L=2 m
» Reynolds number:Re,=4 million
» Friction velocity:1.2 m/s
» Viscous scale: 12.5 pym
» Diameter of active smallest vortices:0.4 mm
» Minimum grid size=:0.1 mm (100 pm)
> Surface grids per 1 m2: 100 million
» Number of grids in total: 40 billion
» Computational resources:40,000-200,000 cores




: Engineering Applications of

_Fully-resolved LES
B Applications of LES expected in 2015

automobile L=2m, L::nz/i)m/s (100 4.0 x 10° 20
model ship ;Z:::)(uig ;c:llles 4.6 x 10® 1.2
model pump Di?(')ofsmr;"‘ul?:r:s;"’ 3.6 x 10° 12

wind turbine D,=40 m, L=0.4 m, U=64 2.5 x 10° 3
m/s

.y D,=600 mm, 1800 rpm, 5

axial-flow fan 1=0.2 m, U=56 mis 7.5 x 10 12
D,=500 mm, 600 rpm, 5

propeller fan L=0.2 m, U=16 m/s 2.0x10 3
. D,=80 mm, 3400 rpm, 4

small cooling fan 1'=0.02 m, U=14 mis 1.9x 10 7

40 billion

20 billion

4000 billion

40 billion

9 billion

100 million

1 million

Development and
Validations of Flow and
Acoustical Solvers




IBenchmark tests for airfoil flow
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|Code tunings-1/3

B Data reordering for minimizing occurrence of L1, and L2
caChe miss S — S —— 2 e e g e

ICRS=1~5M

Tetrahedral elements Hexahedral elements

|Code tunings-2/3

B Sustained performance of the hot kernel

Hexahedral element Tetrahedral element

Full unroll (1core) 10.8% 4.2%

Full unroll +

Y o
Reordering (1core) 10.2% 10.2%




|Code tunings-

3/3

B Overall Performance and speed-ups
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IValidation Studies-2/2

B Comparisons of PSD of Streamwise Velocity
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| Experimental Setup

B Measured: drag & lift, surface pressure,
velocity profile, sound

Traverse




| Validation Studies
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Instantaneous flow structures
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| Predicted far-field sound

equation: 2°p _

B Acoustical field computed by Lighthill
, 0°%p
a
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Comparison of sound pressure level

Sound field at
(760 Hz)

St=5.7

IBenchmark test for HVAC soundc;ﬁ

|

Sound field at 760 Hz

T

~8-Exp. of Wakahara et al.

—e-10M CAA mesh with mid-nodes

~8-10M CAA mesh with mid-nodes, with
penetration of the sound
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Comparison of sound pressure level
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Application Examples

Drag Reduction of Passenger Car by
Controlling Vortical Structure behind Car

(Reynolds number=1.0 x 106,
# of grids = 2 billion)

Collaborator: Toyota Motor Corporation
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Vortices in viscous sub-layer

Overall flow structures

 Comparison with Wind-tunnel

" Data

B Accuracy Validations

Static Pressure Distribution
around Car Body

of Drag
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Time average RMS
Original shape | 0.181 0.0041 -
Controlled 0.168 (-7%) 0.0031 B |E——
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Predicted drag coefficients Wake structures

Drag prediction for model ship

(Reynolds number=5 million,
# of grids = 8 billion)

Collaborator: SREC




Grid-convergence Studies ciss
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IComparisons of Velocity Contours

on Propeller Plane

WLpp=0.9825 _prop. plane .~
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1 billion-grid LES

Large Eddy Simulation to KVLCC2

0 million-grid LES

#$%E3XM:T. Nishi etal. icati
— Bare Hull Double Model Ship Reynolds Number —”, B ZAR¥E¥ T2 SM3K. Vol. 16 (2013)
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