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12.2 Research Activities

The objective of our research team is to propose a unified simulation method of solving multiple
partial differential equations by developing common fundamental techniques such as the effective
algorithms of multi-scale phenomena or the simulation modeling for effective utilization of the mas-
sively parallel computer architecture. The target of the unified simulation is supposed to be complex
and combined phenomena observed in manufacturing processes in industrial circles and our final
goal is to contribute to enhance Japanese technological capabilities and industrial process innovation
through the high-performance computing simulation.

Most of the complex flow phenomena observed in manufacturing processes are relating to or cou-
pled with other physical or chemical phenomenon such as turbulence diffusion, structure deformation,
heat transfer, electromagnetic field or chemical reaction. While computer simulations are rapidly
spreading in industry as useful engineering tools, their limitations to such coupled phenomena have
come to realize recently. This is because of the fact that each simulation method has been optimized
to a specific phenomenon and once two or more solvers of different phenomena are coupled for such
a complicated target, its computational performance is seriously degraded. This is especially true
when we utilize a high-performance computer such as K-computer. In such a situation, in addition
to the fundamental difficulty of treating different time or spatial scales, interpolation of physical
quantities like pressure or velocity at the interface of two different phenomena requires additional
computer costs and communications among processor cores. Different mesh topology and hence data
structures among each simulation and treatment of different time or spatial scales also deteriorate
single processor performance. We understand that one of the keys to solve these problems is to adopt
unified structured mesh and data structure among multiple simulations for coupled phenomena. As
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a candidate of unified data structure for complicated and coupled phenomena, we focused on the
building-cube method (BCM) proposed by Nakahashi[1].

[1]K. Nakahashi, High-Density Mesh Flow Computations with Pre-/Post-Data Compressions, Proc.
AIAA 17th CFD Conference (2005) AIAA 2005-4876

12.3 Research Results and Achievements

12.3.1 Development of a unified framework for large-scale multiphysics
problems

Based on the Building Cube Method (BCM), we have developed a unified solver framework CUBE
(Complex Unified Building cubE) for solving large-scale multphysics problems. The framework has
a modular design where CUBE provides a core library containing kernel functionalities e.g. a mesh,
flow fields and I/O routines. Solvers are then developed on top of the kernel by connecting necessary
kernel modules together, forming a solver pipeline, describing the necessary steps to solve a particular
problem.

Load balancing is an essential component in today’s large scale multiphysics simulations, and
with an ever increasing amount of parallelism in modern computer architecture it is essential to
reduce even the slightest workload imbalance. An imbalance could severely impact an application’s
scalability. Traditionally, load balancing is seen as a static problem, closely related to the funda-
mental problem of parallel computing, namely data decomposition. For a CFD simulation based
on BCM, since each cubes contains the same amount of cells the goal is to evenly distribute the
cubes among the available cores. However, such a decomposition assumes that the workload for each
cube is uniform. For most cubes this is true, but for cubes which contain immersed bodies, combus-
tion, chemical reactions, etc. the workload is slightly higher, which implies a workload imbalance.
Therefore, to retain good scalability a load balancing method that balances the workload not only
considering the BCM mesh, but also the additional workload from the immersed body, chemical
reactions, etc., was developed.

Figure 12.1: An example of load balancing with respect to the cost of evaluating the immersed
geometry and the cost of computing the fluid cells, colored by MPI rank.

To evaluate the performance of the load balancer, we used CUBE to solve two different in-
compressible flow problems (full vehicle and a landing gear model) on the K computer. And, the
total execution time for performing a fixed number of time steps for both an unbalanced (no load
balancing) and a balanced case (using load balancing) on various numbers of cores are compared
(Figure 12.2).

12.3.2 Development of a very large scale incompressible flow solver with
a hierarchical grid system

The CUBE, name of our software framework, has been developed by conjunction with incompressible
flow code which developed to realize the analysis in a real development process of industrial field on
the massively parallel environment, including pre- and post-processing.

Industrial collaboration, MAZDA: We have utilized it for the complexed geometrical analysis
using dirty CAD data received from automotive company. In last year, we have conducted basic
aerodynamics validation using the vehicle geometry of MAZDA Motor Corporation. The conclusion
was we need to improve an accuracy of drag force prediction. In this year, we have improved it
conducting method survey of interpolation technique onto surface/volume, and the fundamental
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Figure 12.2: Comparison of runtime per time-step for balanced and un balanced cases for the landing
gear model (left) and the vehicle model (right)

investigation of approximate domain method on immersed boundary (IB). The difficulty was came
from the uncertainty of front/back face of complicated geometry because the interpolation caused
huge error if the search of face orientation has been missed. It was highly depends on the complexity
of geometry and grid resolution. The method which is drawn by the analogy of Poisson solver
providing a front/back face information based on flow solution has been developed. Then we could
successfully get a reasonable absolute drag value (about 2% error), and drag delta between 2 different
aerodynamic configurations. At the same time, we could successfully reproduce the characteristic
total pressure flow field comparing to wind-tunnel measurement data.

Figure 12.3: Overview of computational grid and flow field (MAZDA Motor Company).

Table 12.1: predicted drag on 2 configurations normalized by experimental base case.
Cd Exp. Sim.
Base 1.000 1.021
Aero 1.011 1.043
∆Cd 1.15% 1.46%

Industrial collaboration, SUZUKI: The usability on the practical use of industrial applica-
tion has been evaluated by discussing with professional engineers of automobile company. we have
corroborated with SUZUKI MOTOR CORPORATION to do this work. We have provided CUBE
to them with simple documents and training, and they have evaluated by their own way, and gave
us their feedback report. The geometry preparation time has been accelerated from 35 hours using
commercial software to 2 hours using CUBE framework, based on dirty CAD data. The estimated
drag coefficient between 2 configuration had better agreement with measurement than commercial
code. It shows CUBE is already ready for usage in the actual design process in term of the usability,
human-cost, accuracy, and turn-around time. But, they had a strong request to improve calculation
time because their process has a limitation to finish each job within 1 night whereas our method
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requires 2 or 3 days. To say more, their method is based on Reynold averaged approach based on
strong turbulence model which is known to have relatively large error, our method is based on the
pure transient approach which generally requires 10 times larger calculation resource comparing to
RANS. After the discussion, we have agreed to improve it in near future because it is very important
to know the true needs on the field of industrial engineering. As the first step of that, we have
developed a new function to enable us to use local refinement grids in the grid generation software.
It can reduce the calculation load about from 1/5 to 1/10 for the vehicle case, to accelerate the
solution. And the implementation and testing of the local refinement functionality for IB has been
started in this year. We thinks it also can lead to the enhancement of effective multi-grid method
(MG), or adaptive mesh refinement method (AMR) in the future development scope.

Both of MAZDA and SUZUKI could decide to promote the results inside their organization, and
continue the current research activity using our software in FY2016 by submitting the application
and accepted the industrial use project on K-computer.

Figure 12.4: Overview of characteristic flow field (SUZUKI MOTOR CORPORATION).

Table 12.2: predicted drag on 2 configurations normalized by experimental base case.
Condition CUBE Commercial Code A
Finest grid size 2.0 [mm] 2.0 [mm] (layer 0.04[mm])
Num. of cells 400 million 53 million
Fluid Configuration LES (Standard Smagorinsky) DES (SST k-ω)
Num. of timesteps 145,000 4,000
CAD prepare 8 hours 8 hours
Pre processing time 2 hours 34.5 hours
Parallel num. 4,096 cores (K-computer) 512 cores (Intel Xeon)
Flow computation time 258 hours 8 hours
Post processing time 1.5 hours 1.2 hours
Error of Cd prediction Applx. 10% Applx. 11-16%
Error of ∆Cd prediction 8% 12%

Wind HPC consortium: At a research activity on Wind-HPC consortium which is organized
by Tokyo Institute of Technology and several Japanese major construction companies, the detailed
turbulence characteristics on wind canopy of actual urban area geometry that has housings, buildings,
vegetation, and street, and so on, has been investigated. And, the academic case validation using
square cylinder has been conducted. The results shows reasonable accuracy, so both of results has
been published in the paper of architecture design. This research will continue on the FLAGSHIP
2020 project of priority ] 4 regarding wind environment evaluation for building construction on severe
climate condition through next years.

12.3.3 Development of unified compressible flow solver for unified low to
moderate Mach number turbulence with hierarchical grid system

The Simulation of the low speed compressible turbulence is a key challenge for the industrial applica-
tions such as combustion, aeroacoustics and significant heat transfer phenomena. Roe scheme with a
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Figure 12.5: Pressure field in Shiodome area(50m Height)

Figure 12.6: Pressure field in Marunouchi area(50m Height)

Figure 12.7: Q-criterion (Q=0.0015) in Shiodome area

Figure 12.8: Q-criterion (Q=0.0015) in Marunouchi

low-Mach number fix [1] is adopted to tackle slow flows with variable densities. An immersed bound-
ary method (IBM) for compressible flows with a fast, easy to implement and robust interpolation
method is developed to handle the complex geometries.

Basic Validation with Academic case: Based on the experiments conducted by Jia and
Gogos [2], a steady-state natural convection around a heated sphere under the condition of that,
the Grashof number based on the radius of the sphere is 104, is conducted to validate the unified
solver. Fig. 12.9(a) shows the contour of the velocity magnitude. The entrainment comes from
the bottom of the sphere which is consistent with the description by [2]. Fig. 12.10 shows the
temperature contour. Above the top of the sphere, higher temperature region is formed, which cause
worse natural convection near the surface so the velocity in this region is quite low. Comparisons of
the averaged Nusselt number (Nu), drag coefficients caused by pressure and viscous are tabulated in
Table 12.3. The results are in good agreement with the experimental data and show the accuracy
and availability of our program for dealing with the complex geometry and heat transfer problems.
The present results have been published in [3].

The simulation of a sphere at Re=104 is performed to investigate the availability of the unified
solver for higher Reynolds numbers. Fig. 12.11 shows the distribution of mean pressure coefficient.
The result is well consistent with the [4] and the separation angle can be also accurately captured,
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Figure 12.9: A heated sphere: velocity magnitude (m/s)

Figure 12.10: A heated sphere: temperature (K)

which is around 86 degrees.
Fig. 12.12 shows the Q criterion contoured by the magnitude of the velocity. The turbulence

structures are mainly formed after the separated shear layers generated from the separation point.
Besides, the transition from large to small turbulence structures can be also clearly observed in the
wake region.

Figure 12.11: Sphere flow at Re=104: Distribution of mean pressure coefficient

Table 12.3: Comparison with existing experimental data
N̄u CD,p CD,u

Exp. [2] 8.74 0.46 0.62
Present 8.77 0.46 0.59
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Figure 12.12: Sphere flow at Re=104: Q criterion

Finally, the simulation of the whole vehicle demonstrates the capability of the unified solver.
Fig. 12.13 shows the contour of the velocity magnitude. The development of the boundary layer
on the front window and roof can be clearly observed, which shows the capability of unified solver
for handling the complex geometry. Besides, the flows penetrate the front of the car to the engine
room is also obviously shown, which indicates that our immersed boundary can also treat non-
watertight geometry. Fig. 12.14 shows the history of the drag and lift coefficients. After reaching
the quasi steady state, the average vales of them are good agreement with the experimental data.
This is an indication that the unified solver is also able to obtain accurate results for this kind of
practical application. In Fig. 12.15, the Q-criterion contoured by the magnitude of velocity is shown.
The development of turbulent coherent structures near the wheel, mirror and side windows is well
captured. In addition, the typical turbulent structures-hair pin can be also obviously observed on
the roof.

[1] F. Rieper, Journal of Computational Physics, 230 (2011) 5263-5287.
[2] H. Jia, G. Gogos, Int. J. Heat Mass Transfer 19 (1996) 1603-1615.
[3] C. Li, M. Tsubokura, Int. J. Heat Mass Transfer 75 (2016) 52-58.
[4] C. George, S. Kyle, Physics of Fluids, 16 (2004) 1449-1466.

Figure 12.13: Vehicle Simulation: Snapshot of velocity magnitude

12.3.4 Development of high performance moving boundary solver for re-
alistic motion

Aerodynamics of Vehicle in a turn: The aerodynamic performance and stability a vehicle is
strongly influenced by the crosswinds during cruise and while in turning maneuvers. It is difficult to
simulate such real-world flow scenarios in wind tunnel experiments. Furthermore, it is also difficult to
measure unsteady aerodynamic forces in wind tunnel experiments. Thus, it is desirable for numerical
methods to be able to efficiently and accurately simulate such flow conditions. To this end, here, we
present simulation of a vehicle (the complex full vehicle geometry discussed in the previous section)
undergoing a turning motion, including wheel rotation and turn, chassis roll and turn, in a uniform
flow. This simulation the result of a collaborative work between Mazda Motor Corporation and
RIKEN AICS. The detailed vehicle geometry and it motion data were provided by Mazda, and the
simulation was carried out at on the K-computer using CUBE. The Lagrangian-Eulerian approach
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Figure 12.14: Vehicle Simulation: Time series of drag (left) and lift (right) coefficients

Figure 12.15: Vehicle Simulation: Snapshot of flow structures extracted by the Q-criterion

developed during the previous year was used for this simulation. As mentioned above all the vehicle
motion, except linear translation, is imposed on the vehicle. If the linear translational motion was
imposed on the vehicle, a fine mesh would be needed in the vehicle’s path, which makes the mesh
size excessively large. An alternate approach, where instead of imposing the linear translation on the
vehicle it is imposed on the entire mesh, was used. In this approach the vehicle’s center of gravity
remains fixed relative to the mesh. So, the fine mesh is needed only in a small region around the
vehicle instead of the region of the vehicle’s path. This reduced the mesh size by a factor of 3-5.
The results of the simulations are shown in Fig. 12.16.

Figure 12.16: Flow field around a vehicle in a turn. (Left) Velocity magnitude on a horizontal plane.
(Right) Iso surface of swirl.

Aerodynamic performance of a Ski jumper: Ski jump is a popular winter sport and is a
part of winter Olympics. It is one of the sports in which Japan is competitive and has some of the
best ski jumpers in the world. Ski Jump is a sport where aerodynamic interaction of the jumper and
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air plays a key role in outcome of the sport. Minute changes in an athlete’s posture can go a long
way, literally. The distance covered by an athlete is strongly correlated to the drag and lift forces
on the athlete while in air. And, these forces are greatly influenced by the athlete’s posture. In
collaboration with Prof. Keizo Yamamoto of Hokusyo University we investigated the aerodynamic
performance of two of Japan’s top ski jump athletes, Haruka Iwasa and Sara Takanashi. Through
the unsteady aerodynamic simulation of the two ski jumpers we analyzed the evolution of forces
during a short period before and after the jump from the ski ramp. During this period the jumper
changes from a sitting posture to a standing posture. Our analysis revealed that the posture and
motion of Haruka Iwasa lead to lower drag force and higher lift force compared to the forces on Sara
Takanashi. This is consistent with the real-world performance record of the two ski-jumpers.

Figure 12.17: Evolution of flow around Ski jumper Haruka Iwasa during a jump. (Left) Starting
posture of the jump. (Right) Final posture of the jump.

12.4 Schedule and Future Plan

(1)Five-year objectives and goals toward 2017

• Construction and development of the simulation technology for bringing out the performance
of K-computer

• Proposal of the technological trend of HPC simulation toward EXA-scale

(2)Long-term objectives

• Establishment of the research and development center for industrial simulation technology

• Contribution to computer science by expanding the developed simulation technology to differ-
ent fields

(3)Time schedule
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