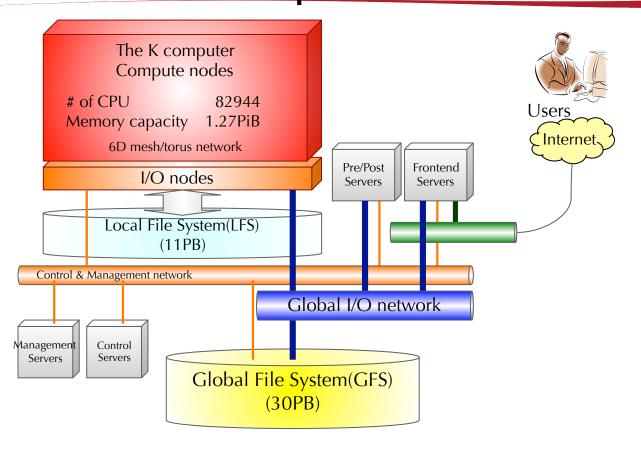
Computer simulations create the future

Long term failure analysis of 10 petascale supercomputer

<u>F. Shoji</u>¹, S. Matsui², M. Okamoto³, F. Sueyasu², T. Tsukamoto¹, A. Uno¹ and K. Yamamoto¹

- ¹ Operations and Computer Technologies Division, RIKEN AICS
- ² Technical Computing Solutions Unit, Fujitsu Limited
- ³ IT Infrastructure Business Group, Fujitsu Systems West Limited

Objectives

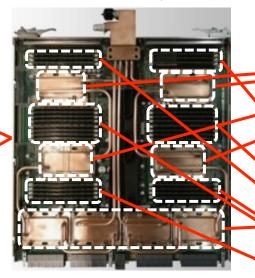


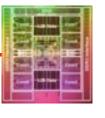
- Analyzing failures on extremely large scale supercomputers, such as the K computer, is very important for the following reasons:
 - To optimize operation against failures and reduce downtime
 - To reveal and repair weaknesses in hardware and software
 - To clarify factors that require improvements for the development of the K computer's successor
 - To share operational experiences with other supercomputer centers and assist in developing best practices
- However, this kind of researches and activities are not so much.

The K computer overview

Number of major parts

Compute Rack

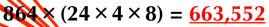

× <u>864</u>


 $864 \times 9 = 7,776$

System Board $864 \times 24 = \frac{20,736}{}$

CPU $864 \times (24 \times 4) = 82,944$

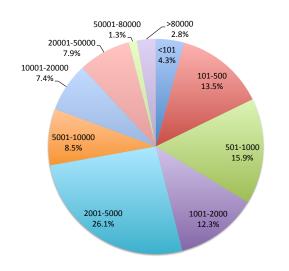
Inter Connect Controller $864 \times (24 \times 4) = 82,944$



CPU/ICC are water-cooled(inlet:15°C outlet:17°C)
Other components are air-cooled

When a failure of CPU/ICC/System Board occurred then the system board will be replaced.

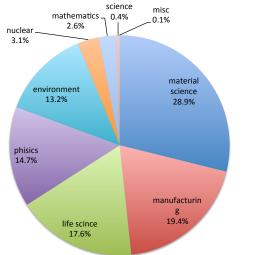
(For DIMM failure, the DIMM will be replaced.)


Usage status

2012/09/28 - 2015/06/30

- Registered subjects/users
- Average number of executed jobs
- Average number of active users

Job size (node*time based)



Science fields (node*time based)

: <u>~150/1200</u>

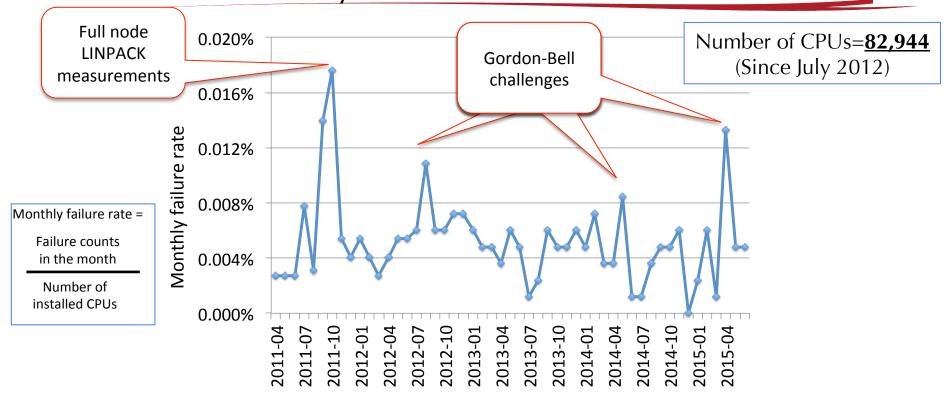
: <u>1193.2/day</u>

: 109.5/day

Advanced Institute for Computational Science Failure analysis on K computer

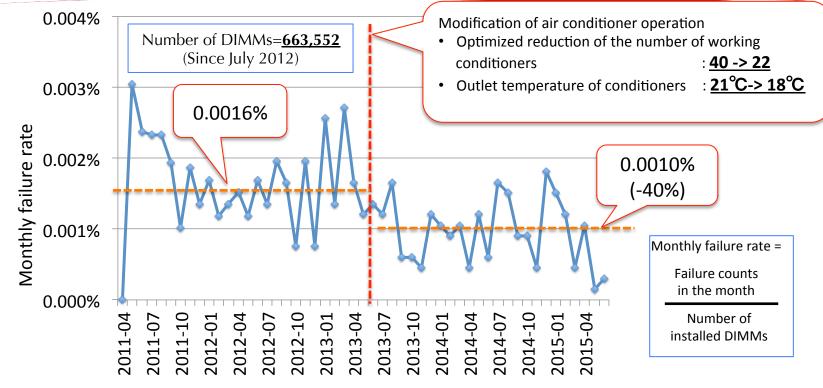
- K computer consists of extremely many parts and components.
- K computer always works with high load and is used by various types of jobs and users.
- Failure events are expected to occur more frequently than the others.

Failure statistics of K computer should be useful for failure analysis of supercomputer.



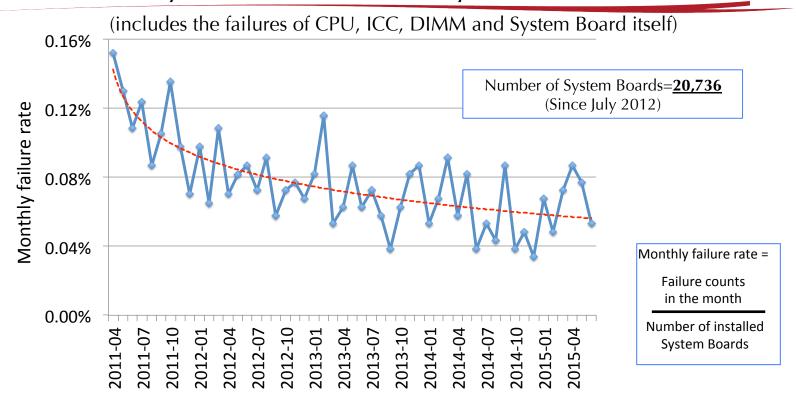
Failure trends

Monthly Failure Rate of CPUs



Failure trend of CPUs is almost stable except high load terms

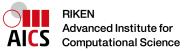
Advanced Institute for Computational Science Monthly Failure Rate of DIMMs



Failure trend of DIMMs was changed to be lower at the modification of air conditioner operation in July 2013

Advanced Institute for Monthly Failure Rate of System Boards Computational Science

Failure rate of system boards seems to reach to the plateau

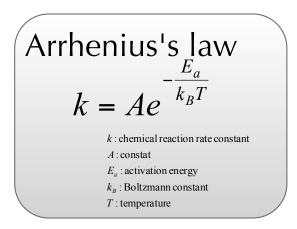


Failure rates

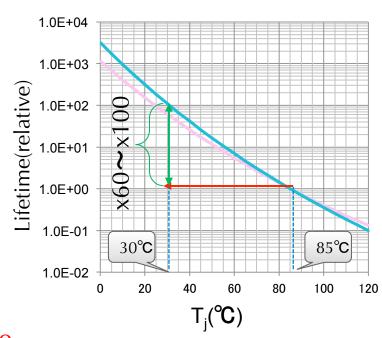
Comparison with Blue Waters

AFR : Annual Failure Rate (Average failure rate per year)
FIT : Failure In Time (1FIT = 1 failure per 10⁹ hours)

	K computer (April 2011 – June 2015)				Blue Waters(*)			
	Number of parts	AFR	FIT	FIT/GB	Number of parts	AFR	FIT	FIT/GB
CPU	82,944	0.06%	72.00	N/A	49,258	0.23%	265.15	N/A
DIMM	663,552	0.016%	18.02	9.01	197,032	0.112%	127.84	15.98


(*) C. Di Martino et al., Lessons learned from the analysis of system failures at petascale: the case of blue waters. 44th international conference on Dependable Systems and Networks (DSN 2014), 2014.

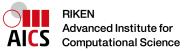
- CPU failure rates of the K computer are about quarter compared to that of Blue Waters.
- For DIMM, FIT/GB is about half.


Advanced Institute for Consideration of low failure rates Computational Science

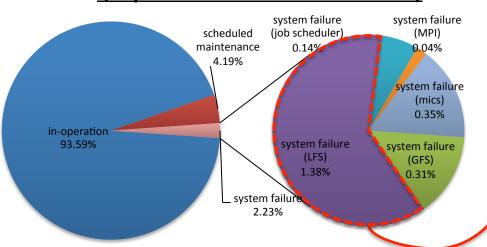
According to our early estimation, if junction temperature T_i of CPU could be decreased from 85°C to 30°C then

relative life time will be longer $x60 \sim x100$

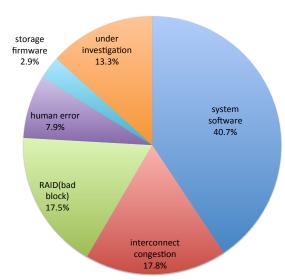
Low T_i seems to contribute to lower failure rates



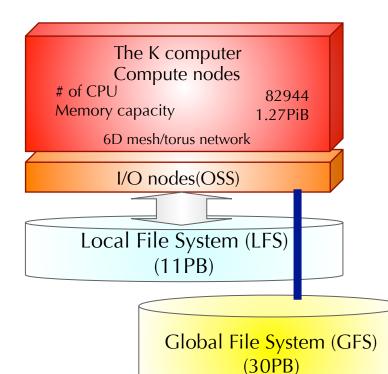
Whole system failures



System availability


system availability (September 2012 – March 2015)

System availability achieved more than 93%


• More than 60% of system failure time was due to local file system(LFS) failures.

system failure(LFS)

- System software bugs(40.7%)
- MDS/OSS down due to interconnect congestion(17.8%)
- Partial RAID system failure (17.5%)

. .

Design concept from user requirements:

- LFS consists of many OSSes and OSTs to realize higher bandwidth.
 - OSS: <u>2592</u>, OST:<u>5184</u> (GFS OSS:<u>90</u>, OST:<u>2880</u>)
- LFS is configured as one volume to provide a shared area.

Results:

- Larger number of OSSes and OSTs revealed the many potential bugs in the system software and many severe failures were caused by such bugs.
- LFS down means all service stop, because it is a single failure point.

Lessons learned:

- Do not configure a file system with larger number of OSSes and OSTs to avoid potential bugs.
- Do not make one huge volume to avoid a single point failures.

Summary and Outlook

- On analyzing the failures occurred on the K computer, we found the followings:
 - 1. Failure trend of CPUs is almost stable except high load terms.
 - 2. Failure trend of DIMMs was changed to be lower at the modification of air conditioner operation in July 2013
 - 3. CPU and DIMM failure rates of the K computer are about quarter and half compared to those of Blue Waters, respectively.
 - 1. Low Tj seems to contribute to lower failure rates.
 - 4. System availability achieved more than 93%, and more than 60% of system failure time was due to local file system(LFS) failures.
 - 1. <u>Do not configure a file system with larger number of OSSes and OSTs to avoid potential bugs.</u>
 - 2. <u>Do not make one huge volume to avoid a single point failures.</u>
- A detailed analysis of relations between the failures and the factors such as accumulated job processing time, temperature is now in progress.

Acknowledgements

- Fujitsu system engineers and customer engineers who work for the operation support and maintenance of K computer.
- RIKEN AICS Operations and computer technologies division members who work for the operation and enhancement of K computer.
- K computer development project team members of Fujitsu and RIKEN.

