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2.2 Research Activities

The K computer system is a massively parallel system which has a huge number of processors
connected by the high-speed network. In order to exploit full potential computing power to carry
out advanced computational science, efficient parallel programming is required to coordinate these
processors to perform scientific computing. We conducts researches and developments on paral-
lel programming models and language to exploit full potentials of large-scale parallelism in the K
computer and increase productivity of parallel programming.

In 2015FY, in order to archive these objectives above, we carried out the following researches:
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(1) We are working on the development and improvement of XcalableMP (XMP) programming
languages. XcalableMP is a directive-based language extension, designed by XcalableMP
Specification Working Group (XMP Spec WG) including some members from our team as
a community effort in Japan. It allows users to develop parallel programs for distributed mem-
ory systems easily and to tune the performance by having minimal and simple notations. In
this year, we have improved Coarray functions in Fortran. The feature of coarray of the Omni
XcalableMP compiler is implemented for the K compiler. In addition, some benchmarks and
an application are parallelized with XcalableMP and their performance is evaluated on the K
computer.

(2) As an extension of XcalableMP to exascale computing, we are proposing a new programming
model, XcalableACC, for emerging accelerator clusters, by integrating XcalableMP and Ope-
nACC. We continue working on the language design and the compiler development of Xcal-
ableACC. This research is funded by JST CREST project on “post-petascale computing”.

(3) Co-design for HPC is a bidirectional approach, where a system would be designed on demand
from applications, and applications must be optimized to the system. We started the design
of tools for co-design, including the SCAMP profiler for the network of large scale systems.

(4) As the post-K computer will be a large-scale multicore-based system, we are investigating pro-
gramming models for manycore-based parallel systems as a next version of XcalableMP, in-
cluding dynamic tasking and load balancing as well as advanced PGAS models for distributed
memory systems.

(5) We conducted several collaborations on the performance evaluation with JSC, University of
Tsukuba, Kyusyu Institute of Technology and other groups. In the collaborations with Kyusyu
Institute of Technology, a task parallel language Tascell was evaluated on the K computer. We
are developing tools for performance analysis of large-scale parallel programs, by enhancing a
tuning tool Scalasca, which is being developed by JSC, for the K computer. This tool is used
for performance analysis of real applications, in collaboration with their developers.

In addition to the research activities, we conduct promotion activities to disseminate our software.
To promote XcalableMP as a means for parallelization of programs, we made the XcalableMP
workshop, seminars or lectures as follows.

e XcalableMP workshop and LENS workshop (Oct. 29, 30)
e Tutorial of XMP at Osaka University (Oct 23)

e Tutorial of XMP at University of Tsukuba (Dec 9)

e FOCUS seminar on XMP (Jan 8)

The seminar or tutorials consist of both classroom and hands-on learning

2.3 Research Results and Achievements

We are developing Omni XcalableMP that is an open-source XcalableMP compiler, in cooperation
with the university of Tsukuba. The latest version 0.9.2 has been released in November, 2015

2.3.1 Improvement of the coarray feature of XcalableMP

Coarray Fortran (CAF) is a parallel language that is a language extension of Fortran. To support
the local view, XMP contains coarray features, which were adopted from Coarray Fortran (CAF)
defined as part of Fortran 2008 standard. Based on experience of the implementation of Omni XMP
C compiler, we have implemented and improved main part of CAF specification into XMP Fortran
compiler.

We performed two imporvements for memory allocation / registration and Communication.
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Figure 2.1: Parameters that determines data contiguity

Improvement of Memory Allocation / Registration

Coarrays are variables that can be accessed from other nodes. To allow remote nodes to access the
local data, the address of the data must be registered at runtime with the low-level communication
library, e.g., Tofu library in case of the K computer. To reduce runtime overhead of this operation
for all coarrays, we made a mechanism that registers all static coarrays just before the execution of
the program. The compiler generates the initializer for all static coarrays appearing in the program
file at compile time and generates the caller calling the initializer at linkage time.

Improvement of Communication

To reduce communication latency overhead, contiguous data should be transferred simultaneously.
For partially contiguous multidimensional array data, the length of the contiguous portion and the
periodic pattern should be detected at compile time or at runtime. We made an algorithm and
implemented on the compiler and the runtime library. Figure shows an example of partially-
contiguous communication data (colored elements) and major parameters in the algorithm. The
parameters, lengths and addresses of data elements, are analyzed by the compiler and forwarded to
the runtime library to find the contiguity.

Experimental Results

(1) Himeno benchmark

We ported Himeno benchmark program written with MPI to four different CAF programs.
They used the same Fujitsu Fortran compiler with the same options including automatic thread
parallelization. While the MPI version has 610 lines excluding comment and empty lines, the
CAF versions have 402 to 415 lines, 32% to 34% shorter.

The result on grid size XL (1024 512 512) is shown in Figure Two CAF programs are
respectively 5% and 2% faster than the MPI version in average.

(2) NAS Parallel benchmark

We ported NAS Parallel benchmarks CG, EP, FT and MG written in MPI for CAF respectively.
Figure[2.3|shows the result of CG Class-C as an instance and summarizes the history of the CAF
program tuning. Finally CAF program V49 exceeds the original MPI version in performance.
On EP, the CAF version is only 2% less performance in average than the original without
tuning. On FT, the first version of CAF program extract more than 93% of the performance
of the original in all evaluation ranges of Class B, C and D. Besides the CAF program has
still room for performance tuning. On MG, the final version of CAF provides almost the same
performance as the original in average.
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Figure 2.2: Four different CAF programs vs. the original MPI on Himeno benchmark
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Figure 2.3: Porting and performance tuning of CAF program on NPB CG Class-C
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Figure 2.4: Performance of HPC Challenge Benchmark with XcalableMP

STREAM HPL FFT RandomAccess
XcalableMP 62 517 201 226
MPI 329 8,800 787 938

Table 2.1: SLOC of HPC Challenge Benchmark with XcalableMP

2.3.2 Performance Evaluation of the HPC Challenge Benchmark with
XcalableMP

To evaluate productivity and performance of XcalableMP, we have implemented four benchmarks,
namely STREAM, HPL, FFT, RandomAccess, in the HPC Challenge Benchmark Suite by using
XcalableMP.

The figure[2.4]shows that the performance results of the XMP implementations. For a comparison
purpose, we have also evaluated the performances of the MPI implementations which are reference
implementations. The horizontal axis means that the number of compute nodes, the left vertical axis
means that the performance corresponding to the bar, the right vertical axis means that the ratio of
the performance of the XMP implementation to that of the MPI implementation corresponding to
the line. When the performance ratio is greater than 1, the performance of the XMP implementation
is better than that of the MPI implementation. The figure shows that the performances of XMP are
almost the same as those of MPI.

The table shows that source lines of code (SLOC) of the benchmarks in XMP and MPIL
The table shows that the SLOCs of the XMP implementations are much less than those of the MPI
implementations.

2.3.3 Performance of Three-dimensional Fluid Simulation with Xcal-
ableMP

The three-dimensional Eulerian fluid code written in Fortran, IMPACT-3D, which performs com-
pressible and inviscid fluid computation to simulate converging asymmetric flows related to laser
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only Z both Y and Z allof X, Yand Z
#core Ix=h~=lz
nz ny nz nx ny nz
256 1024 32 8 4 4 4 2
2048 2048 256 16 16 8 8 4
16384 4096 64 32 16 16 8
131072 8192 128 128 32 32 16

Table 2.2: Simulation parameters

fusion, is parallelized by three different domain decomposition methods, namely the domain is di-
vided in (1) only Z direction, (2) both Y and Z directions and (3) all of X, Y and Z directions using by
using directives only for the “global-view” programming model of XcalableMP (XMP). The program
is also hand-coded with MPI using the same domain decomposition methods, and the performance
difference between XMP and MPI codes is evaluated on the K computer.

As one node consists of 8 cores in the K computer, one process is dispatched onto each node
and each process performs parallel computations with 8 threads, which are explicitly described
by OpenMP in both XMP and MPI programs. We run both XMP and MPI codes with three
different decomposition methods and evaluate the weak scaling on the K computer using Omni
XcalableMP /Fortran compiler 0.7.0 and Fujitsu Fortran K-1.2.0.15. A number of cores for execution
and corresponding simulation parameters are summarized in Table 2.2 Ix, ly, lz are Fortran array
size of first, second, third dimension, and nx, ny, nz are a number of division in X, Y, Z direction,
respectively.

Performance is measured by a hardware monitor installed on the K computer, and three indexes
are obtained. The total number of floating point operations is counted by the hardware monitor and
is interpreted to MFLOPS using elapsed time. Finally it is divided by theoretical peak MFLOPS and
output as MFLOPS/PEAK value. The average amount of transfer data per second between memory
and CPU is also monitored. It is divided by theoretical peak memory access throughput and output
as Memory throughput/PEAK value. The hardware monitor counts the number of instructions, and
the number of SIMD instructions is divided by the total number of instructions to obtain SIMD
execution usage.

MFLOPS/PEAK values for all 6 cases, namely (MPI, XMP) x (only Z, both Y and Z, all of X,
Y and Z) are shown in Fig. [2.5| (a). Performance of XMP codes is as same as that of MPI codes,
and small differences among three decomposition methods are found. But we can get only 8 9 % of
peak performance of the K computer. From the hardware monitor, we found that SIMD execution
usage was less than 5% in all cases, and this could degrade the performance. Most cost intensive
DO loops in IMPACT-3D include IF statements, which are needed to correctly treat extremely low
velocity and flow direction change regardless of XMP and MPI codes, and the IF statement prevents
the native Fortran compiler from generating SIMD instructions inside the DO loop. Thus relatively
low performance is obtained.

As the true rate of the IF statement is nearly 100% in IMPACT-3D, speculative execution of SIMD
instruction causes almost no overhead. So forcing the compiler to generate the SIMD instructions
could be useful to enhance the performance, and it can be done with “simd=2” compiler option. All
codes are recompiled with that option and rerun. SIMD execution usage increases up to around 50%
in all cases, and we can expect performance improvement. MFLOPS/PEAK values for all cases are
shown in Fig. (b). MPI code performance is improved and we can get up to 20% of the peak
performance. XMP code performance is also improved, but these are below 15% even XMP code
performance is almost same as MPI code performance without “simd=2" option. Although Memory
throughput/PEAK values of MPI codes are 55%, those of XMP codes are only 37% and this low
memory throughput is one of candidates for low sustained performance.

In the converted code by the XMP/F compiler, all Fortran arrays are treated as allocatable
arrays even the original code uses static arrays. The allocatable array prevents the native Fortran
compiler from optimizing the DO loop with prefetch instructions because the array size cannot be
determined at compilation time, and it could cause low memory throughput. All Fortran static
arrays in the hand-coded MPI code for the decomposition method of all of X, Y and Z directions
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Figure 2.5: Performance comparison between MPI and XMP on the K computer with (a) no opti-
mization for three decomposition methods, (b) SIMD optimization for three decomposition methods
and (c) allocatable array optimization for the decomposition method of all of X, Y and Z directions.

are just replaced by allocatable arrays and we check a performance difference. Performance of the
MPI code is shown in Fig. (c) for static arrays (blue dash) and allocatable arrays (purple dash).
MFLOPS/PEAK values are dropped from 20% to 15%, and this performance degradation without
the prefetch instructions is confirmed. To force the native Fortran compiler to perform the prefetch
optimization, we can use additional “prefetch_stride” compiler option. All codes are recompiled with
“simd=2" and “prefetch_stride” options and rerun. Performance improvements by this compiler
option are shown in Fig. (c) for both MPI (purple dash to red dash) and XMP (purple solid to
red solid) codes. MFLOPS/PEAK values are improved by 2 3% with the prefetch optimization.

2.3.4 Design of SCAMP (SCAlable Mpi Profiler) as a co-design tool for
large-scale network

Co-design for HPC is a bidirectional approach, where a system would be designed on demand from
applications, and applications must be optimized to the system. In order to co-design the network of
large scale systems, it is important to evaluate the communication performance of applications. The
trace driven simulator estimates the network performance based on trace files. Firstly, user should
run their application on a real system in parallel to obtain the trace files from all processes. These
trace files should contain MPI function calls, and their arguments and time stamps, etc. Then, the
performance of a virtual system is estimated by using the trace files. While the trace driven simulator
is straightforward, sometimes it is not appropriate for the simulation of large parallel systems since
it is difficult to obtain the number of trace files for the future system if the current system is smaller
than the future one. In order to tackle this scaling-problem in the trace driven simulator, we propose
a method called SCAMP (SCAlable Mpi Profiler), which creates a large number of pseudo trace files
based on the small number of trace files obtained from a small system and drives the network
simulator using the pseudo trace files to estimate the performance of the large systems.

According to the experiments using SCAMP and using K-computer, as shown in Figure [2.6]
SCAMP overestimates the performance of benchmarks, i.e. the runtime estimated by SCAMP is
shorter than the real runtime on K-computer. The reason is that while we have focused only on the
network performance, the computation time would change as the number of nodes increases.

2.3.5 Performance evaluation of Tascell on the K computer

Tascell is a task parallel language that supports distributed memory environments. A Tascell worker
spawns a real task only when requested by another idle worker. The worker spawns a task after
restoring its oldest task-spawnable state by temporarily backtracking. This mechanism eliminates
the cost of spawning/managing logical threads. It also promotes the reuse of workspaces and improves
the locality of reference since it does not need to prepare a workspace for each concurrently runnable
logical thread. Furthermore, a single Tascell program can run efficiently on shared and distributed
memory environments.
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Figure 2.6: Comparison between real time and estimated time by SCAMP

This study aims to evaluate Tascell on massively parallel systems; in particular, we employed
1024 nodes of the K Computer with 8192 cores in total. In addition, we revised the implementation
of Tascell to get it working on such systems.

In the conventional implementation of Tascell, inter-node communication is realized by TCP /TP
communication via message routing servers called Tascell servers. This implementation is suitable for
dynamic addition of computation nodes and wide-area distributed environments. On the other hand,
Tascell servers often become communication bottlenecks. Furthermore, in recent supercomputer
environments, there may be no appropriate places for deploying Tascell servers, and TCP/IP may
not be available for inter-node communication; it is hard or impossible to run the conventional
implementation in such an environments.

Therefore, we implemented inter-node communication in Tascell using MPI, which is supported by
most practical supercomputer systems. At the same time, we adopted a server-less implementation
in order to overcome the deployment and bottleneck problems, excluding the support of wide-area
distributed environments. Note that programmers can write Tascell programs without concern about
the underlying communication layer.

We evaluate the performance of our MPI-based implementation on the K computer using 7168
workers (7 workers x 1024 nodes). The result is shown in Figure

In order to enable our implementation to work with the MPI implementation on the K computer
and many other MPI implementations, it only requires the MPI. THREAD _FUNNELED support
level, in which only the main thread can make MPI calls, and the two-sided communication paradigm.
With such minimum requirements, our MPI-based implementation successfully realized both high
performance and deadlock freedom.

2.4 Schedule and Future Plan

From this year, we started the study of the programming models for post-petascale, including pro-
gramming models and runtime techniques to support manycore. We already propose XcableACC
as a solution for accelerator-based system, which is to be explored in the JST CREST project. As
the post-K computer will be a large-scale multicore-based system, we will investigate programming
models for manycore-based parallel systems including dynamic tasking and load balancing as well
as advanced PGAS models for distributed memory systems.

As in recent years, an important action for XcalableMP project is to disseminate our XcalableMP
to applications users. As in last years, we organized several schools and hands-on, workshop with
potential users also in this year. We will continue these promotion activities while we will study
more optimization technique of XcalableMP compiler to improve the performance. As a research
agenda especially for the K computer, we will contribute the scalability of large-scale applications
for the K computer.
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Figure 2.7: Evaluation results (Speedup) of Tascell programs on the K computer
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