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 This talk is about the general principles of learning about 
model states and parameters from laboratory or field data. We 
want to transfer the information in the (noisy) data to a model 
(with model errors) of the physical or biological dynamical 
processes producing the measurements.  
 
 When unknown model parameters and unobserved  state 
variables are estimated using the data, we can validate the model 
through prediction when new forcing is presented. 
 
 Using the same methods one can: design experiments; 
determine how many measurements are required; retrieve more 
information from existing measurements. 
 
 Examples will be discussed for  
 

biophysical modeling of neurons and functional networks 
neuromorphic engineering---neurons and functional networks on a chip 



Some application areas for Data Assimilation: 
 
Genetic regulatory networks 
   
signal transduction pathways  
 
systems biology; synthetic biology; Immunology 
 
biophysical modeling of neurons and functional networks 
 
neutrino astrophysics 
 
coastal flows and transport of toxic constituents after storms 
 
electrical and chemical engineering 
 
identifying oil and gas reservoirs 
 
hydrological models of streams and lakes 
 
neuromorphic engineering---neurons and functional networks on a chip 
 
numerical weather prediction 
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Measure V(t) with 
selected Iapplied(t) 
 
Evaluate all 
parameters and all 
unobserved state 
variables a(t) 

Neuron Model 



This is the challenge: 
 

 Using laboratory experiments on individual neurons and on 
collections of neurons.  Build biophysically based models of functional 
neural networks which matches experiments and predicts the response 
to new stimuli. 
 
 Our strategy is this: 
o create a model of the functional network of interest—e.g. song production 
network for song birds and, of course, the individual neurons in the network---
what is a sensible model—we use Hodgkin-Huxley models. 
 
o using the model itself, design experiments that stimulate all degrees of 
freedom of the neuron/network and measure enough quantities at each 
observation time---these are numerical simulations. 

 
o Use the model along with data, voltage across membranes, and perhaps 
other measurements, to determine the unknown parameters in the model and 
the unobserved state variables in the model. 

 
o “validate the neuron model”—via prediction—These validated neurons can 
can be used in network construction. 



One mainstream view of network modeling and operation is that 
details do not matter but some form of network “organization” or 
structure determines network operations. 
 
Our use of data assimilation to design experiments, test and validate 
models of cells and systems points to advantages of other directions. 
 
Why would we want the kind of detail of neural or cellular processes 
accurate modeling and careful data assimilation provides? 
 
  use models of nerve cells (neurons) to compare healthy and 

diseased cells to provide biophysical targets for therapies 
 

  use detailed models of regulatory networks for genetic action to 
design interventions  
 

  use detailed, verified models of functional network connectivity 
and nodal performance to engineer functions into high-
performance electronics---e.g. sequence generation and 
recognition with human accuracy but machine performance 
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Neurobiological Laboratory Experiments  
Margoliash Laboratory, UChicago 

Isolated Neurons from the Avian Song System 
 
On each neuron many different Iapplied(t) measurements in time 
“epochs” of 2-6 seconds 
 
Membrane Voltage Observed 
 
Sampling time 0.02 ms (50 kHz), 500-1500 ms of observations 
 
Use all this to estimate the unknown parameters in the neuron 
and unmeasured state variables, then predict the response of 
the neuron to new stimuli (forcing).  Model Validation 



Time        (Units of 0.02 ms) 2000 ms 

Why this Iappl(t) ? 



Data Assimilation:  

Transfer of Information from Measurements  

to a Model of the Observations 

We have  

           noisy measurements yk(t); k = 1, …L; and  

           errors in the model xa(t+Δt)=fa(x(t)); a=1,…,D >>L,  

           uncertain initial conditions at the starting time t0.  

           We make measurements in a time window [t0,T].  We 
wish to incorporate the information in these measurements 
at t0, t1, …, tN = T into our statistical estimate of the complete 
state of the model at T and into our statistical estimate of 
the model parameters. 



 Statistical data assimilation is communication of 
information from measurements (transmitter) to a 
dynamical model (receiver). 
 

 At the end of an observation window [t0,T] we want 
the conditional probability distribution of the state x(T) of 
the system  

P(x(T)|observations) 
  

given measurements during the window.  
 

 We then want to predict the future conditional probability 
distribution P(x(t > T)) for new forcing of the system. 
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Conditional probability of states X(N) given observations Y(N):      
P(X(N)|Y(N)) 
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In neurobiology:  We have measurements of voltage across 
the cell membrane during the observation window 
 
Y={y(t0) = V(t0), y(t1) = V(t1)…, y(T) = V(T)}     (curr 
 
L = 1, D = 12, p = 50      Maximal conductances gNa, gSK, …. 
 
We have a model (current conservation)  
 
CdV(t)/dt = INa(t)+IK(t) +ICa(t)+ISK(t)+….+Istimulus(t) 
 
 
 
 
 
Measurements have errors, model has errors 

( ) ( ( ))dx t F x t
dt
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Everything hinges on the structure of A0(X) in path space 



Two methods for evaluating these high dimensional integrals: 
 
(1) Laplace’s method (1774); seek minima of A0(X)--there are multiple minima 

 
 
 
 
 

 
 
(2) Monte Carlo searches of exp[-A0(X)]—distribution in path space. 
 
 
 First method seeks minima of A0(X) 
 
 
             Second method samples near these minima. 



We focus on the Laplace method.   How can we find the 
minima Xq     q=0,1,…. 
 
 
 
 
 
 
 
 

Which minimum gives the biggest contribution to the integral ? 
Smallest action A0(X0) from path X0 

 
Everything rests on the structure of A0(X) in path space. 



Action for State and Parameter Estimation 

Dynamics 

Information Transfer 

Initial Condition 



 A0(X) is nonlinear in X and has multiple minima. Location 
and number of these minima depend on the model and on the 
number of measurements at each observation time in [t0,tN]. 
 

 Standard model, Gaussian Error Action  
  

 If observations have Gaussian noise and models have 
Gaussian errors, action is 
 
 
 
 
 
 
 
 
This is not Gaussian, if f(x) is nonlinear. Finding the minima at any 
Rm and Rf is not hard (IPOPT), but finding the path with the smallest 
action—a challenge 



  
Looking in continuous time shows the challenge clearly: 
 
 
 
 
 
 
  
 
                      gives the Euler-Lagrange equations:  
 
 
 
 
 
 
With the boundary conditions  
pa(t0) = pa(tf) = 0. 
 
 

‘nudging’ 

0( ) 0A Xδ =



    

 To determine the paths for the lowest minimum action; find minimum 
for very small model error value Rf, then move slowly in Rf to a larger value, 
then an even larger value. We call this annealing; distinct from standard 
simulated annealing.  
 
 If Rf  ∞, model error is 0.  We look at the opposite limit Rf0, 
where model plays no role and dynamical phase space structure is absent. 
 
 At Rf = 0, minimum is degenerate at xl(t) = yl(t); other unmeasured 
states undetermined. With Rf = Rf0 very small, choose N0 initial starting paths 
with xl(t) = yl(t), others chosen from a uniform distribution, this is a set of X0 
for numerical minimization using IPOPT. We call outcomes X1.  
 
 Use these as initial starting paths with Rf = αRf0 ; α>1, to arrive at N0 
paths X2. Increase Rf to α2Rf0, … and continue using outcome paths as initial 
guesses for next optimizations, slowly increasing Rf by powers of α. 
 
 Plot A0(Xq) versus                              .  Action level plots. 



Simple Model Neuron  NaKL     
 

 D+NP = 4 + 19, L = 1  Voltage  



Twin Experiment on NaKL Neuron 
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y(t) = x(t) + σN(0,1)  noise 
 
D = 4, L = 1 





 Annealing in Model Error Accuracy 
 

 
 Paths giving minima of the action depend on the 
number of measurements L.  
 
 
 For the Standard Model GEA, when action levels are 
independent of Rf, the action level is dictated by statistics of 
measurement error term---a consistency check on the action 
level evaluations. 



NaKL   Model Action Level Plot 

0log [ / ]f fR Rαβ =







NaKL Neuron       Twin Experiment  
 
Parameters     Known     Estimated     LB           UB 
gNa                   120.0         108.4          50.0          200.0 
ENa                   50.0            49.98            0.0           100.0 
gK                     20.0            21.11           5.0             40.0 
EK                   −77.0          −77.09          −100.0         −50.0 
gL                      0.3             0.3028           0.1             1.0 
EL                  −54.0           −54.05         −60.0          −50.0 
C                      0.8              0.81              0.5             1.5 
Vm                 −40.0            −40.24        −60.0         −30.0 
dVm             0.0667            0.0669         0.01            0.1 
τm0                    0.1                   0.0949         0.05            0.25 
τm1               0.4                   0.4120        0.1             1.0 
Vh                    −60.0                 −59.43        −70.0        −40.0 
dVh          −0.0667             −0.0702        −0.1         −0.01 
τh0                 1.0                  1.0321         0.1             5.0 
τh1                 7.0                   7.76            1.0             15.0 
Vn               −55.0                −54.52        −70.0      −40.0 
dVn             0.0333              0.0328         0.01          0.1 
τn0                 1.0                  1.06               0.1            5.0 
τn1                 5.0                   4.97            2.0               12.0 



  

Lorenz96 Model   D = 5 

 ‘Twin Experiments’    Use to test methods of data 
assimilation; use to design experiments. 
 
 Generate data with known model; add noise to 
model output; present l = 1,2,…,L < D time series to 
assimilation procedure. 









Back to Song System Nucleus HVC 
 

 Interneurons, L = 1  Voltage  
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VLSI Neuromorphic Chip 
 
 
  Test parameters on the chip to check quality of fabrication 

versus design 
 
  Use a twin experiment to test method of data assimilation: 

generate data from the VLSI chip. Use “voltages” on chip 
neurons as measured quantities to estimate parameters 
known from first step. 

 
  Use voltage data from biological neuron to readjust chip 

parameters and state variables to those for the data, then 
predict voltage response to new current stimulation. 

  
 





Test 
parameters 
on the chip 
to check 
quality of 
fabrication 
versus 
design 



Use a twin 
experiment to test 
method of data 
assimilation: 
generate data from 
the VLSI chip. Use 
“voltages” on chip 
neurons as 
measured 
quantities to 
estimate 
parameters known 
from first step. 



Use voltage 
data from 
biological 
neuron to 
readjust chip 
parameters 
and state 
variables to 
those for the 
data, then 
predict 
voltage 
response to 
new current 
stimulation. 



So, what did we learn ? 
 

1. Make a model—no algorithms for this, use your best 
knowledge of the (bio)physics. 
 

2.  Make a big model—experiments will prune the model 
 

3.  Do twin experiments to determine how many measurements 
you need to get the “global” minimum of A0(X)—annealing. 
 

4.  Use twin experiments to design laboratory experiments 
 

5. Do experiments to determine consistency of model with data. 
 

6.  Use the completed model and estimated x(T), via probability 
distribution or dx/dt = F(x(t)), to predict, for t > T. This 
validates (or not) the model. 



So, what did we learn ? 
 
7. Use Laplace method + computable corrections to determine 
consistency of numerical methods. 
 
8. If there are not enough measurements at each observation 
time, (a) get more; (b) use waveform information via time delays. 
 
9. Using Data Assimilation, one can (a) test new fabrications of 
VLSI neurons, (b) test DA methods on verified VLSI chip, (c) 
complete neuron model on chip from biological data; predict 
response to new forcing. 



Unfinished Business 
 
 

Measurements for Networks of Neurons---extracellular 
potentials? Other technology 
 
Computational capability for the future 
 
Port network models to VLSI 
 
Use principles of network functions to solve similar problems in 
other space and time domains. 
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