
Chapter 13

HPC Programming Framework
Research Team

13.1 Members

Naoya Maruyama (Team Leader)

Motohiko Matsuda (Research Scientist)

Shinichiro Takizawa (Research Scientist)

Mohamed Wahib (Postdoctoral Researcher)

Keisuke Fukuda (Research Associate)

Koji Ueno (Student Trainee)

An Huynh (Student Trainee)

Satoshi Matsuoka (Senior Visiting Scientist)

Tomoko Nakashima (Assistant)

Aya Motohashi (Assistant)

13.2 Research Activities

We develop high performance, highly productive software stacks that aim to simplify development
of highly optimized, fault-tolerant computational science applications on current and future super-
computers, notably the K computer. Our current focus of work includes large-scale data processing,
heterogeneous computing, and fault tolerance. A major ongoing project in our group will deliver
a MapReduce runtime that is highly optimized for the intra- and inter-node architectures of the K
computer as well as its peta-scale hierarchical storage systems. Another major project focuses on
performance and productivity in large-scale heterogeneous systems. We also study high performance
graph analytics on the K computer. Below is a brief summary of each project.

13.3 Research Results and Achievements

13.3.1 KMR

Improvng Locality When Running MPI Programs as MapReduce Tasks

Although MapReduce systems can allocate tasks to nodes where their inputs reside to increase data
locality for improving performance, these systems only target on tasks implemented as serial pro-
grams and do not consider running tasks implemented as parallel programs using MPI as Map or
Reduce task. As many scientific applications are implemented using MPI and some application

108



Chapter 13. HPC Programming Framework Research Team

Figure 13.1: Execution frow of MPI programm in MapReduce model

Figure 13.2: Calculation pattern of the benchmark program

workflows form ensemble execution patterns of such MPI programs, the workflows can be imple-
mented easily and efficient data access can be achieved if a MapReduce system can allocate tasks
implemented using MPI so that it can exploit data locality in them.

We proposed an extension of the execution model of MapReduce to achieve high performance
when running MPI programs as Map/Reduce tasks.We model data to be processed as Key-Value as
the traditional MapReduce model. However, to processing the data, we propose a new map function
which makes process groups where each process in a group has a key-value whose key is same as
those of other processes in the group and applies a user-defined mapper, which is implemented using
MPI, to the key-values using processes in each group. Figure 13.1 shows the execution flow.

To evaluate our proposal, we used N ×N nodes of the K computer and compared performance
of our method in which data access was performed locally and that of random data access. We
used a synthetic benchmark program where each node has an individual data and which iterates
the following two computation; the first computation groups N nodes in low direction and processes
data on them, and the second groups N nodes in column direction and processes data on them as
showen in Figure 13.2. The result is shown in Figure 13.3. The horizontal axis is the amount of data
on each node and the vertical axis is the relative performance of an iteration against random data
access. As can be seen from the figure, the performance of our proposal improve as the number of
nodes and the amount of data increase.

Skew-Tolerant Shuffling for Load Balancing for Reduce Operation

In a MapReduce program, the number of tasks in Map phase is defined by the number of split of the
input data and that in Reduce phase is defined by the number of keys generated by the previous Map
phase, and these numbers defines the maximum degree of parallelism of both phases. Though the
former can be defined by users when executing the program, users can not control the latter because
it depends on patterns of applications and input data. In contrast, as KMR statically defines number
of processes used in both phase as the same value, we need to adopt load balancing techniques to

109



Chapter 13. HPC Programming Framework Research Team

Figure 13.3: Experimental results

average loads between processes in both phase. Though balancing loads in Map phase can be left
to users, a MapReduce system should support load balancing in Reduce phase as loads on processes
heavily depend on the shuffle communication which is transparently performed by a system.

To balance loads on processes in Reduce phase, we proposed and implemented a shuffle algorithm
that minimizes the skew of numbers of key-value pairs processed on each process [5]. Our method is
based an existing algorithm called LEEN and is extended as follows:

• It uses a distributed algorithm.

• It reduces the number of search target keys (keys in key-value pairs) to reduce the cost of
running the algorithm.

We compared the performance of our method and that of using a shuffle that randomly assigned key-
values to processes by using a benchmark program that implemented k-means on top of MapReduce.
As a result, time spent for executing Reduce task was reduced against the random shuffle as our
proposal averaged the number of keys among processes. On the other hand, we also confirmed that
the overall execution time increased due to the large cost of running the algorithm. We plan to
reduce the algorithm execution cost as a future work.

Visualize MapReduce Task Execution

Widely used MapReduce systems, such as Apache Hadoop and Spark, have their own profiling and
visualization tools to see the status of jobs. They help users to look for performance bottlenecks,
to do debug and to optimize their programs. As KMR is implemented as one of an MPI library
using the C language, we can use any profilers, such as gprof, Intel Vtune and FUJITSU profiler.
However, as they target on low level events, such as memory access and function calls, they are not
suitable for profiling task level events in a MapReduce program. We developed an event tracer for
KMR that traced MapReduce operations, such as Map/Reduce tasks and Shuffle communication,
and a visualization tool named KMRViz that displayed the traces in a GUI window.

The tracer traces KMR function calls and records times of start and end of a function and numbers
of input and output key-value pairs of the function. To eliminate IO overhead for writing records
during a program execution, we implemented the tracer so that it recorded profiles in-memory while
execution and wrote them to files at the end of the program execution. Moreover, to eliminate the
burden of using the tracer, we implemented it so that the tracer could be enabled just by setting an
environment variable. KMRViz receives trace files generated by the tracer and displays them in time
series by each process as the Figure 13.4. It is implemented using GTK+3 and users can zoom-in
and out using mice and trackpads.

13.3.2 High Level Framework for High Performance AMR

Summary: Adaptive Mesh Refinement methods reduce computational requirements of problems by
increasing resolution for only areas of interest. However, in practice, efficient AMR implementations

110



Chapter 13. HPC Programming Framework Research Team

Figure 13.4: Screenshot of KMRViz

are difficult considering that the mesh hierarchy management must be optimized for the underlying
hardware. Architecture complexity of GPUs can render efficient AMR to be particularity challenging
in GPU-accelerated supercomputers. In this project, we present a high-level framework that can
automatically transform serial uniform mesh code annotated by the user into parallel adaptive mesh
code optimized for GPU-accelerated clusters. We show experimental results on three production
applications. The speedups of code generated by our framework are comparable to hand-written
AMR code while achieving good and weak scaling up to 1000 GPUs.

Motivation: Frameworks that provide support for GPU in AMR applications require the pro-
grammer to write his own versions of the target-optimized solvers. Moreover, there can be scalability
limitations caused by the overhead of the CPU-GPU communication schemes in those frameworks.
We present a high-level framework that specializes in enabling efficient and scalable structured AMR
solutions to scientific applications running on GPU-accelerated systems [2]. Our framework uses
a high-level programming model that provides an architecture-neutral programming interface and
adopts an AMR strategy that would eliminate any CPU-GPU communication schemes that can
limit scalability. We base our framework on octree-based AMR implementation in which we use a
distributed tree and adapt the mesh in a parallel fashion with minimum inter-node communication.
We base our GPU implementation on a data-centric approach at which the CPU is specialized in
managing the data structures representing the mesh hierarchy, while AMR-specific routines that
operate on mesh application data are executed on the GPU. Hence keeping the mesh application
data arrays on the GPU memory for the entirety of the simulation.

Programming model: The programming model is designed to be exposed in an architecture-
neutral manner; the programmer has no knowledge of the underlying architecture. We provide the
programmer with a set of C language directives to identify the stencil functions and data arrays in
a logically fixed and uniform mesh implementation of solver(s). The programming interface enables
the underlying compiler-based framework to statically analyze the solvers, construct the adaptive
mesh hierarchy, automatically parallelize the mesh partition over distributed memory, and apply
optimizations required for keeping the mesh application data, i.e., stencil arrays, in GPU memory
throughout the simulation.

Optimizations: When an AMR code generated by our framework is executed on a GPU-
accelerated cluster, the stencil and mesh adaptation kernels run on the GPU, while managing the
octree data structures and load balancing is done on the CPU side. Since we pursue efficiency and
scalability, code on both the CPU and GPU should be optimized. The stencil kernel and mesh
adaptation kernels are memory-bound kernels that are optimized to use the shared memory of the
GPU and maintain coalesced memory accesses. For load balancing, intra-node load balancing is
applied by moving balancing the number of blocks equally among the GPUs. For the inter-node
load balancing, we rely on a space fitting curve to decide on how to redistribute the blocks.

Implementation: Our framework consists of a compiler and runtime components. We generate
executables optimized for GPU execution by leveraging the LLVM compiler infrastructure. Our
compiler builds on the LLVM compiler infrastructure. First, we use the front end to analyze and

111



Chapter 13. HPC Programming Framework Research Team

0.0E+00

5.0E+02

1.0E+03

1.5E+03

2.0E+03

2.5E+03

4 8 16 32 64 128 256 512 996

Ru
nt

im
e 

(S
ec

on
ds

)

Number GPUs (Mesh size per GPU: 4,096x512x512)

PHASE-FIELD
Uniform Mesh Auto AMR Hand-written AMR

1.
9 

x

1.
7 

x

0.0E+00

5.0E+02

1.0E+03

1.5E+03

2.0E+03

4 8 16 32 64 128 256 512 996

Ru
nt

im
e 

(S
ec

on
ds

)

Number GPUs (Mesh size per GPU: 4,0963)

HYDRODYNAMICS
Uniform Mesh Auto AMR (Daino)
Hand-written AMR Auto AMR (GAMER)

9.
6 

x

8.
7 

x

1.0E+00

5.1E+01

1.0E+02

1.5E+02

2.0E+02

2.5E+02

3.0E+02

4 8 16 32 64 128 256 512 996

Ru
nt

im
e 

(S
ec

on
ds

)

Number GPUs (Mesh size per GPU: 8,1923)

SHALLOW-WATER S
Uniform Mesh Auto AMR Hand-written AMR

4.
1 

x

3.
1 

x

Figure 13.5: Weak scaling of uniform mesh, hand-written and automated AMR (GAMER-generated AMR
included in hydrodynamic)

1.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

3.0E+04

3.5E+04

4 8 16 32 64 128 256 512 996

Ru
nt

im
e 

(S
ec

on
ds

)

Number GPUs (Mesh size 4,0963)

PHASE-FIELD
Uniform Mesh
Auto AMR
Hand-written AMR1.7 x

1.5 x

1.0E+00

5.1E+01

1.0E+02

1.5E+02

2.0E+02

2.5E+02

3.0E+02

3.5E+02

4 8 16 32 64 128 256 512 996

Ru
nt

im
e 

(S
ec

on
ds

)

Number GPUs (Mesh size per GPU: 4,0963)

HYDRODYNAMICS
Uniform Mesh
Auto AMR (Daino)
Hand-written AMR
Auto AMR (GAMER)

9.6 x

2.1E+03

8.9 x

1.0E+00

5.1E+01

1.0E+02

1.5E+02

2.0E+02

2.5E+02

3.0E+02

4 8 16 32 64 128 256 512 996

Ru
nt

im
e 

(S
ec

on
ds

)

Number GPUs (Mesh size per GPU: 8,1923)

SHALLOW-WATER S
Uniform Mesh
Auto AMR
Hand-written AMR

4.1 x

3.2 x

Figure 13.6: Strong scaling of uniform mesh, hand-written and automated AMR (GAMER-generated AMR
included in hydrodynamic)

translate the stencil source code into GPU-optimized code in the form of LLVM Intermediate Rep-
resentation (IR). Next, compiler passes are applied on the IR to add the AMR management code,
which in turn make API calls to: a) the runtime API, and b) the GPU-optimized code generated by
Nvidia back end code generator. Finally, LLVM IR is compiled and linked with the runtime libraries
to generate an executable. The different stages of the compilation is managed by a shell script that
the programmer invokes.

We have built two libraries into the runtime. First, the AMR library that encapsulates the AMR
hierarchy management software. Second, the communication library that wraps the MPI runtime
library to simplify data movement operations for the AMR driver.

Applications: We evalute our framework with three production applications. Phase-field simu-
lation for dendritic growth: We simulate 3D dendritic growth during solidification in a binary alloy
using phase-field model. The computation requires a 2nd order finite difference scheme for space
with 1st forward Euler-type finite difference method for time on a 3D uniform mesh. We use the
code by Shimokawabe et. al as our reference implementation. Hydrodynamics Solver : We model
a hydrodynamics application using 3D Euler equations. We explore a 2nd order directionally split
hyperbolic schemes to solve the equation. We use the code by GAMER framework for the Hydro-
dynamics solver as our reference implementation. Shallow-water Solver : We model shallow water
simulations by depth-averaging the Navier–Stokes equations. We use a numerical method based on
a semi-discrete, 2nd order, central scheme. To advance the time step, we base our flux, max step,
boundary condition, and time integration kernels on the model proposed by Saetra et. al.

Experimental Setup: We use the TSUBAME2.5 supercomputer at Tokyo Tech. Each node
has two socket Intel Xeon X5670 2.93GHz CPUs (12 cores), and three Nvidia Kepler K20x GPUs
with total 54GB and 18GB of system and GPU memory. The compute nodes are interconnected
by dual QDR Infiniband networks with a full bisection-bandwidth fat-tree topology network. We
use CUDA v7.0 Toolkit for GPU code and LLVM compiler infrastructure v3.8 for the framework.
Single precision variables are adopted in all experiments for all applications. The hand-written and
automated AMR versions of all applications use the data-centric AMR approach. All experiments
used 163 mesh block size and 2D CUDA thread blocks of size 16x16 threads. All test runs are
collected for 100, 000 time steps with a constant maximum of six refinement levels.

Results: In a weak scaling experiment, shown in Figure 13.5, the runtime for uniform mesh,
hand-written AMR, and auto-generated AMR are compared. The following points are important
to note. First, more than 1.7x speedup is achieved using our framework with 1000 GPUs for the
phase-field simulation. This is a considerable improvement considering that the uniform mesh im-

112



Chapter 13. HPC Programming Framework Research Team

plementation is a Gordon Bell prize winner for time-to-solution. Second, we included a comparison
with the auto-generated AMR by GAMER framework for the hydrodynamics solver. The AMR code
generated by our framework is faster than the code generated by GAMER, mainly because GAMER
uses a pipeline to hide data movement latency while our framework uses a data-centric approach to
avoid data movement altogether. Third, we achieve good scaling that is comparable to the scalability
of the hand-written AMR code.

Figure 13.6 shows a strong scaling comparison for hand-written AMR and auto-generated AMR
against uniform mesh implementation. The auto-generated AMR by our framework achieves runtime
and scalability comparable to that of the uniform mesh implementation. However, when using more
GPUs, reduction in speedup starts to occur as the management of AMR starts to dominate the
simulation runtime.

13.3.3 High Performance Graph Analytics Study with Graph500

We have been working on performance analyses and optimization of the Graph500 benchmark with
the K computer. Previously, our implementation of the benchmark achived 19585 GTEPS at the
problem size of scale 40, which was ranked second in the Graph500 ranking updated in November
2014.

To further improve the performance, we mainly focused on its inter-node communication cost,
and developed a series of optimizations that allowed us to develop a nearly 2x faster implementation.
We extended the data structures and algorithm called Hybrid BFS, which is known to be effective
small-diameter graphs, so that it scales to top-tier supercomputers with tens of thousands of nodes
with million-scale CPU cores with multi gigabyte/s interconnect. With those optimizations, its
performance when running on the K computer with 82,944 compute nodes and 663,552 CPU cores
reached 38612 GTEPS, which was ranked first both at the two consecutive lists of July and November
2015. A paper describing the details of the algorithms and optimizations will be published in the
future.

13.4 Schedule and Future Plan

13.4.1 KMR

We plan to extend our first research activity (Improve locality when running MPI programs as
MapReduce tasks) to improve the representation of programs. Because the current version depends
on key-value pairs as data exchanged between tasks as the usual MapReduce model but supports
both serial and parallel MPI execution, we have to distinguish Map functions for these two cases and
actually implemented them as different functions. It is obviously redundant as their objective is the
same; mapping data. Moreover, users can not recognize the number of processes used in each MPI
programs run as Map because they are unaware of locations of input key-value pairs and number of
processes that hold the input key-value pairs.

To overcome these problems, we are developing a hybrid programming model of MPI message
passing and MapReduce model. In this model, we model data exchanged between tasks as multi-
dimensional array which can be split to process each chunk depending on user perspectives at run
time. The location of chunks of the multi-dimensional array is also changeable at run time. A Map
function in this model applies a user-defined function to each chunk of the multi-dimensional array
using processes that hold the data. We are developing the model and applying it to application
workflows that perform ensemble simulations.

As for KMRViz, we plan to support more KMR operations to trace and visualize them.

13.4.2 High Level Framework for High Performance AMR

Initially, we intend on testing expanding the framework to allow for user-defined boundary con-
ditions and error estimation functions. We also intend on testing framework at larger scale using
TSUBAME2.5 supercomputer (under a grant from JHPCN). Finally, we are closely working with col-
laborators on FLASH project at Chicago university (Dr. Anshu Dubey) to introduce an integration
between our framework and FLASH

113



Chapter 13. HPC Programming Framework Research Team

13.5 Publications

Journal Articles

[1] Kiyoshi Kumahata, Kazuo Minami, and Naoya Maruyama. “High-performance conjugate gra-
dient performance improvement on the K computer”. In: International Journal of High Per-
formance Computing Applications 30.1 (2016), pp. 55–70. doi: 10.1177/1094342015607950.
url: http://hpc.sagepub.com/content/30/1/55.abstract.

Conference Papers

[2] Mohamed Wahib and Naoya Maruayama. “Data-centric GPU-based Adaptive Mesh Refine-
ment”. In: Proceedings of the 5th Workshop on Irregular Applications: Architectures and Algo-
rithms. IA3 ’15. 2015, 3:1–3:7.

[3] Mohamed Wahib and Naoya Maruyama. “Automated GPU Kernel Transformations in Large-
Scale Production Stencil Applications”. In: Proceedings of the 24th International ACM Sym-
posium on High-Performance Parallel and Distributed Computing (HPDC’15). Portland, OR,
June 2015, pp. 259–270.

Invited Talks

[4] Naoya Maruyama. Domain-Specific Approaches in Scientific Computing. 16th IEEE Interna-
tional Workshop on Parallel and Distributed Scientific and Engineering Computing (PDSEC’15).
Keynote. Hyderabad, India, May 2015.

Posters and Presentations

[5] Toshifumi Nishinaga et al. “Towards skew-tuned shuffling for MapReduce on large scale su-
percomputers”. In: The 6th AICS International Symposium. 2016.

Patents and Deliverables

[6] KMR version 1.8.0. Dec. 2015. url: http://mt.aics.riken.jp/kmr.

114

http://dx.doi.org/10.1177/1094342015607950
http://hpc.sagepub.com/content/30/1/55.abstract
http://mt.aics.riken.jp/kmr

	Preface
	Organization
	I Research Division
	System Software Research Team
	Programming Environment Research Team
	Large-Scale Parallel Numerical Computing Technology Research Team
	HPC Usability Research Team
	Field Theory Research Team
	Discrete-Event Simulation Research Team
	Computational Molecular Science Research Team
	Computational Materials Science Research Team
	Computational Biophysics Research Team
	Particle Simulator Research Team
	Computational Climate Science Research Team
	Complex Phenomena Unified Simulation Research Team
	HPC Programming Framework Research Team
	Advanced Visualization Research Team
	Data Assimilation Research Team
	Computational Chemistry Research Unit
	Computational Disaster Mitigation and Reduction Research Unit
	Computational Structural Biology Research Unit

	II Operations and Computer Technologies Division
	Facility Operations and Development Team
	System Operations and Development Team
	Software Development Team
	HPCI System Development Team

	III Flagship 2020 Project
	Flagship 2020 Project


