

1

Introduction to Lattice QCD

Yoshinobu Kuramashi RIKEN AICS Field Theory Research Team

23 May 2011, AICS

Plan of Talk

- §1. Introduction to Lattice QCD
- §2. Hadron Spectrum
- §3. Recent Algorithmic Improvements
- §4. Nuclei in Lattice QCD
- §5. Toward Post-Petascale
- §6. Summary

§1. Introduction to Lattice QCD

Questions in history of mankind

- What is the smallest component of matter?
- What is the most fundamental interaction?

Elementary Particles Known to Date

Fundamental Interactions

	force	strength	gauge boson	theory
(Strong	1	Gluon	QCD
	EM	0.01	Photon	QED
	Weak	0.00001	Weak Boson	Weinberg-Salam
	Gravity	10 ⁻⁴⁰	Graviton	Superstring(?)

Computational elementary particle physics has been led by lattice QCD over past 30 years One of important applications on K computer

Strong Interaction

- Fundamental degree of freedom : quarks and gluons
- Confinement : quark can never be retrieved by itself
- Asymptotic freedom : closer to each other, arbitrarily weaker
- Hierarchy : 3 quarks \Rightarrow proton neutron \Rightarrow nuclear
- Finite temperature and finite density (finite T- μ) : phase transition

Aim of Lattice QCD

QCD Lagrangian

$$\mathcal{L} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + \sum_{q=u,d,s,c,b,t} \bar{q} \left[\gamma_{\mu} (\partial_{\mu} - igA_{\mu}) + m_{q} \right] q$$

Only coupling const. g and quark masses m_q are free parameters

Why is numerical analysis necessary for strong interaction? Too strong to investigate with perturbative analysis Characteristic features (confinement etc.) are nonperturbative

Aiming at quantitative analyses on

- hierarchical structures made of quarks
- phase diagram and EOS under finite temperature/density

based on first principle (QCD Lagrangian) calculations

Numerical method (1)

Path integral in 4-dim. (space 3-dim. + time 1-dim.) continuum theory

$$\langle \mathcal{O}[A_{\mu}, q, \bar{q}]
angle = rac{1}{Z} \int \mathcal{D}A_{\mu} \mathcal{D}q \mathcal{D}\bar{q} \ \mathcal{O}[A_{\mu}, q, \bar{q}] \ \exp\left\{-\int d^4x \mathcal{L}[A_{\mu}, q, \bar{q}]
ight\}$$

Similar to partition function in stat. mechanics \Rightarrow Monte Carlo method Discretize 4-dim. space-time for finite degree of freedom \Rightarrow 4-dim. lattice

Numerical method (2)

Path integral on 4-dim. lattice

$$\langle \mathcal{O}[U_{\mu}, q, \bar{q}] \rangle = \frac{1}{Z} \int \prod_{n, \mu} dU_{\mu} dq d\bar{q} \ \mathcal{O}[U_{\mu}, q, \bar{q}] \ \exp\left\{-\sum_{n} \mathcal{L}_{\text{latt}}[U_{\mu}, q, \bar{q}]\right\}$$

Quark fields are Grassmann (anticommuting) numbers $\Rightarrow \text{ analytically integratied}$ $\langle \bar{\mathcal{O}}[U_{\mu}] \rangle = \frac{1}{Z} \int \prod_{n,\mu} dU_{\mu} \ \bar{\mathcal{O}}[U_{\mu}] \ \exp\left\{-S_{\text{latt}}^{\text{eff}}[U_{\mu}]\right\}$

Average over the configurations gives expectation value

$$\langle \bar{\mathcal{O}}[U_{\mu}] \rangle = \frac{1}{N} \sum_{i=1}^{N} \bar{\mathcal{O}}[U_{\mu}^{(i)}] + O\left(\frac{1}{\sqrt{N}}\right)$$

statistical error

Physical Parameters

Few parameters

- •4-dim. volume: V=NX•NY•NZ•NT
- lattice spacing: a (as a function of coupling const. g)
- quark masses: m_q (q=u,d,s,c,b,t)

Major Systematic Errors

• Finite volume effects

⇒ larger V=NX•NY•NZ•NT

- Finite lattice spacing effects
 ⇒ smaller a
- Quenched approximation (neglect quark vacuum polarization) $\Rightarrow 2+1 (m_u = m_d \neq m_s)$ flavor simulation
- Chiral extrapolation with heavier quark masses
 ⇒ simulations at physical quark masses (physical point)

Need heavier computational cost to diminish the systematic errors $cost \propto (physical vol.)^{1.25} \cdot (lattice spacing)^{-6} \sim -7} \cdot (quark mass)^{-2} \sim -3}$

Hadron Spectrum Calculation

Fundamental quantities both in physical and technical senses

physical side physical input ⇒ $m_u, m_d, m_s, ...$ ⇒ reproduce hadron spectrum? (ex. $m_{\pi}, m_{K}, m_{\Omega}$) validity of QCD / determination of m_q

technical side

hadron correlators in terms of quark fields

 $\left< \mathcal{O}_h(t) \mathcal{O}_h^\dagger(0) \right> \stackrel{t \gg 0}{\sim} C \exp\left(-m_h t\right) \Rightarrow \text{extract } \mathbf{m}_{\mathbf{h}} \text{ by fit}$

Brief History

1981 first calculation of hadron masses in quenched approx.
 Hamber-Parisi
 demonstrate the possibility of first principle calculations

1996~2000 precision measurement in quenched approx. CP-PACS clear deviation from the experiment

initiate 2+1 flavor QCD simulations
 CP-PACS/JLQCD, MILC, ...
 incorporate u,d,s vacuum polarization effects
 reduce ud quark mass toward physical value

Hadron Spectrum in Quenched QCD

physical input m_{π} , m_{κ} or m_{ϕ} , $m_{\rho} \Rightarrow m_{u}=m_{d}$, m_{s} , a

 \sim 10% deviation from experimental values

Hadron Spectrum in 2+1 Flavor QCD

physical input m_{π} , m_{K} , $m_{\Omega} \Rightarrow m_{u}=m_{d}$, m_{s} , a

consistent within $2 \sim 3\%$ error bars

 $2+1(m_u=m_d\neq m_s) \Rightarrow 1+1+1(m_u\neq m_d\neq m_s)$ with QED

§3. Recent Algorithmic Improvements

Gauge configuration generation with Hybrid Monte Carlo method (a variant of Molecular Dynamics)

$$\langle \bar{\mathcal{O}}[U_{\mu}] \rangle = \frac{1}{Z} \int \prod_{n,\mu} dP_{\mu} dU_{\mu} \ \bar{\mathcal{O}}[U_{\mu}] \ \exp\left(-\mathcal{H}_{\text{HMC}}[P_{\mu}, U_{\mu}]\right)$$

Time consuming part

Solution of linear eqs. are require in each MD step

$$\frac{d}{d\tau} P_{\mu}(n,\tau) = -\frac{\delta \mathcal{H}_{\text{HMC}}}{\delta U_{\mu}(n,\tau)}$$
$$= F_{\mu}(n,\tau) \implies x = (D[U_{\mu}])^{-1} b$$

Solver Improvement on Cluster Machine

Bottle neck

memory bandwidth Byte/Flop ≈ 2.1 in MatVec Dx

Advantage in 32bit arithmetic are effective use of

- (1) memory and network bandwidth
- (2) cache size

Maximum use of 32bit arithmetic with the solution kept in 64bit

1: x:initial guess(64bit)2: r = b - Dx(64bit)3: convert $r_{32} := r$ (64bit)4: solve $\delta x_{32} = D^{-1}r_{32}$ (32bit)5: convert $\delta x := \delta x_{32}$ (32bit)6: $r = r - D\delta x$ (64bit)7: $x = x + \delta x$ (64bit)8: if |r| is small end else goto 3

(64bit) $(64bit \rightarrow 32bit)$ (32bit) $(32bit \rightarrow 64bit)$ (64bit) (64bit)the

iterative refinement

preconditioning δx =Mr

the relation r = b - Dx is kept in 64bit

Mixed precision nested BiCGStab

Based on DMy = b, x = My1: x:initial guess, $M \approx D^{-1}$:32bit-preconditioner 2: $r = b - Dx, \tilde{r} = r, \rho_0 = |r|^2, p = r$ 3: loop 4: $\nu = Mp, q = D\nu, \alpha = \rho_0/\langle \tilde{r} | q \rangle$ 5: $r = r - \alpha q, x = x + \alpha \nu$, if |r| is small exit 6: $\nu = Mr, t = D\nu, \omega = \langle t | r \rangle / \langle t | t \rangle$ 7: $r = r - \omega t, x = x + \omega \nu$, if |r| is small exit 8: $\rho_1 = \langle \tilde{r} | r \rangle, \beta = (\alpha/\omega)(\rho_1/\rho_0), \rho_0 = \rho_1$ 9: $p = r + \beta(p - \omega q)$ 10: end loop

Almost all the computational cost is spent by 32bit arithmetic

Converged after 1.5 outer iteration Time is reduced by a factor 2 on Intel 64 with SSE3 and link reconstruction technique (though, iteration number is increased)

⇒ need algorithmic improvements based on architecture

Improvement of Molecular Dynamics

Domain-Decomposed Hybrid Monte Carlo (DDHMC) 4-dim. lattice is decomposed into small blocks ⇒ introduction of hierarchy

 $\begin{array}{ll} \mathsf{F}_{\mu}^{\ \mathsf{UV}} \colon & x = (D_{\mathrm{UV}}[U_{\mu}])^{-1} \, b \, \text{within domain} \\ & \Rightarrow \, \text{small condition number w/o communication} \\ \mathsf{F}_{\mu}^{\ \mathsf{IR}} \colon & x = (D_{\mathrm{IR}}[U_{\mu}])^{-1} \, b \, \, \text{on whole lattice} \\ & \Rightarrow \, \text{large condition number w/ communication} \end{array}$

Multiple Time Step MD Integrator

Sexton-Weingarten 92

Adjust step size according to the magnitude of force

$$\delta\tau^{\rm UV}||F_{\mu}^{\rm UV}||\approx\delta\tau^{\rm IR}||F_{\mu}^{\rm IR}||$$

For example

$$||F_{\mu}^{\mathrm{UV}}|| : ||F_{\mu}^{\mathrm{IR}}|| = 4 : 1 \implies \delta\tau^{\mathrm{UV}} : \delta\tau^{\mathrm{IR}} = 1 : 4$$

Less frequent calculation of $F_{\mu}^{IR} \Rightarrow$ save computational cost

Cost Reduction due to DDHMC

 \Rightarrow Physical point simulation is now possible

27

§4. Nuclei on the Lattice

Now precision measurement of hadron masses is achieved Next step is a challenge for multi-scale physics

Exploratory study for ⁴He and ³He nuclei Yamazaki-YK-Ukawa 10 large binding energy ΔE_{4He}=28.3 MeV ⁴He has double magic numbers (Z=2,N=2)

Difficulties in multi-nucleon system

(1) No. of Wick contractions

(2) how to distinguish bound state from scattering state?

Wick Contractions

He nucleus correlator in terms of quark fields

$$\langle \mathcal{O}_{4_{\text{He}}}(t)\mathcal{O}_{4_{\text{He}}}^{\dagger}(0)\rangle \stackrel{t\gg0}{\sim} C\exp\left(-m_{4_{\text{He}}}t\right) \qquad \Delta E_{4_{\text{He}}}=E_{4_{\text{He}}}-4E_N$$

⁴He operator consists of two protons (udu) and two neutrons (dud) Beam 67

 \Rightarrow No. of Wick contraction: $N_u! \times N_d! = (2N_p + N_n)! \times (2N_n + N_p)!$

⁴ He: 6!×6!=518400	cf. N-N: 3! ×3!=36
³ He: 5!×4!=2880	¹² C: 18!×18!~4×10 ³¹

independent quark diagrams are reduced by imposing m_u=m_d

Identification of Bound State in a Finite Box

 ΔE < 0 both for bound state and attractive scattering state

mandatory to check volume dependence of ΔE

Volume Dependence of ΔE_{4He}

Yamazaki-YK-Ukawa 10

Exploratory study with m_N =1.6 GeV in quenched QCD

same order to experimental values

§5. Toward Post-Petascale

Lattice QCD with Petascale computing

- scientific target:
 - 1+1+1 flavor QCD+QED simulation
 - direct construction of nuclei
- technical points:
 - mixed precision
 - reduction of communication
- **Toward Post-Petascale**
- scientific target:
 - finite temperature and finite density
- technical points
 - may need further algorithmic improvements for

diminishing B/F and hierarchical parallel architecture

Finite Temperature and Finite Density

expected phase diagram

Sign Problem

Introduction of chemical potential $\mu \Rightarrow$ complex phase

$$\begin{aligned} \langle \mathcal{O}[U_{\rho}] \rangle &= \frac{1}{Z} \int \prod_{n,\rho} dU_{\rho} \ \mathcal{O}[U_{\rho}] \ \exp\left\{-S_0[U_{\rho}] + i\theta_{\mu}[U_{\rho}]\right\} \\ &= \frac{\langle \mathcal{O}[U_{\rho}] \ e^{i\theta_{\mu}[U_{\rho}]} \rangle_0}{\langle e^{i\theta_{\mu}[U_{\rho}]} \rangle_0} \end{aligned}$$

large fluctuation of phase \Rightarrow hardly obtain the average

Current popular approach: Taylor expansion in terms of µ/T ⇒ restricted region in T-µ plain (previous slide)

We are developing a new algorithm to explore in the region of low temperature and high density

§6. Summary

Lattice QCD with petascale computing and beyond

scientific target

turning point from understanding the nature to prediction

technical points

further algorithmic improvements for diminishing B/F and hierarchical parallel architecture