Climate research in AICS

Computational Climate Science Research Team / AICS TL : Hirofumi TOMITA

Who am I?

- The University of Tokyo, Department of Aeronautics and Astronautics
 - 1999**:** Dr. Eng.
 - Doctoral thesis **:** The pattern fomrmation in the Benard Marangoni convection
 - Relation of energy flow and convection pattern
- 1999: Frontier Research System for Global Change project post-doctoral researcher
- 2004: Japan Agency of Marine Science and Technology Research Scientist
- 2007~2010: JAMSTEC/ Senior Scientist
- 2011~ AICS/ RIKEN, Team Leader

Development of high resolution atmospheric model

Outline

- Introduction:
 - Importance of clouds in the climate
 - Cloud-aerosol interaction
 - Recent advance in global climate modeling
 - Methodology change from conventional model to GCRM
 - What are big subjects in climate modeling?
 - Need of more sophisticated modeling
- Purpose and plan of our team
 - What is needed for accurate estimation of cloud role on the climate?
 - How should we do on K-computer and next post-peta flops computer environment?
- Summary

Introduction

Cloud! Cloud! Cloud! Various cloud types exist in our earth!

Very difficult to model the cloud!

Overview of cloud disturbance over the globe ---- organization of hierarchical structure of clouds

<u>Super cloud cluster \sim 1000km \rightarrow MJO Cloud element: cumulus</u>

Earth diameter :12740km

Why are clouds important in climate/weather?

- Importance as the engine for general circulation :
 - Cumulus has an important role for atmospheric heat transfer over the globe.
 - Heat transport in the latitudinal direction.
 - Hierarchical structure generates many phenomena.
 - Cloud cluster , super cloud cluster, tropical cyclone, MJO.
- Importance for energy budget in climate:
 - Cloud has two aspect on climate!
 - Parasol effect : reduce the incoming solar incidence.
 - Green house effect : cloud emits infrared radiation into the surface and space.
 - Cloud has a large impact on energy balance through the interaction with aerosol.
 - Indirect effect of aerosol : optical thickness of cloud and cloud life time.
 - Direct effect of aerosol is also important.

Emision of infrare

Radiative forcing of each of anthropogenic components between industrial era and present (from IPCC AR4)

RADIATIVE FORCING COMPONENTS

Recent advance of global atmospheric model

Conventional climate model

- Governing equation
 - Hydrostatic equation : balance between PGF and G.
- Discretization
 - Horizontal: Spectra transform method / lat-lon grid with semi-Lagrangian scheme
 - Vertical discretization
 - Finite Difference method
 - Temporal scheme
 - Semi-implicit scheme
 - fast mode(linear part) : implicit
- Typical resolution
 - IPCC : 100km

 \rightarrow need to parameterize the subgrid cloud.

Global cloud-system resolving model

- Governing equation
 - Non-hydrostatic equation: explicit vertical motion for clouds
- Discretization
 - Horizontal: quasi-homogenious grid (e.g. icosahedral grid)
 - In order to avoid the pole problem and heavy calculation of spectral method
 - Vertical discretization
 - Finite Difference method
 - Temporal scheme
 - Semi-implicit scheme
 - fast mode(linear part) : implicit
 - Time splitting explicit scheme
 - Fast mode (accoustic and gravity wave) : short dt
 - 1D-helmholtz equation
 - Sloow mode : large dt
- Typical resolution
 - NICAM (Tomita and Satoh 2004, Satoh et al.2008) : 7km, 3.5km
 → need to parameterize the subgrid cloud.

Essential difference between conventional GCM & GCRM

- Cloud expression
 - Conventional GCM
 - Cumulus parameterization & Large scale condensation
 - GCRM
 - No cumulus parameterization/ instead, microphysics scheme only.
 - Each of clouds explicitly is resolved
- What is an advantage of GCRM?
 - Explicit expression of cloud dynamics
 - Each of clouds
 - \rightarrow cloud cluster
 - \rightarrow super cloud cluster
 - \rightarrow moist Kelvin wave
 - \rightarrow Madden Julian occilation
 - Explicit expression of cloud hierarchy

NICAM project

• NICAM project (~2000)

- Dynamical core
 - Horizontal grid : icosahedral grid (grid modification : Tomita et al. 2001, 2002)
 - Dynamics : Non-hydrostatic scheme (energy conservation : Satoh 2002, 2003)
 - \rightarrow 3D DC(Tomita & Satoh 2004)
- Cloud representation
 - Avoid "cumulus parameterization"
 - Microphysics only.
- Computational tuning
 - for the massively parallel vector computer system (ES, ES₂)
 - Now, code tuning on K-computer

Recent GCRM simulation by NICAM(1)

- Aqua planet experiment (Tomita et al. 2005, GRL)
 - The first cloud-system resolving simulation over the world (landmark work)
 - Eastward propagation of SCC/Westward propagation of CC.

Recent GCRM simulation by NICAM(2)

Madden Julian Oscillation (Miura et al. 2007, Science)
The successful MJO simulation by GCRM

Recent GCRM simulation by NICAM(3)

- Tropical cyclone change in the GW era (Yamada et al. 2010, GRL)
 - 3months integration for GW environment and Present evironment
 - Intensity : increase/ frequency : decrease
 - Question : Is it true?
 - HPCI strategic program reveal it by more statistical approach.

Significance of GCRM, so far

• Explicit expression of cold pool dynamics

- Story
 - Cloud generation
 - Rain by aggregation
 - Rain sedimentation
 - Evaporation
 - Cold pool
 - Generation of next cloud

DRASTIC IMPROVEMENT OF CLOUD DYNAMICS

• However, current GCRM is not yet sufficient as a climate model.

- Current model : very simple and idealized method
 - Roughly estimation of cloud droplet size
- Radiation : tuned for energy budget suitable to energy balance.

Change from bulk method to spectral bin method! **Particle Dynamics Each of clouds** 8cm ~100km ©NASA, ISS016-E-027426 St = 2.0 DNS by Khain et al. (2007)

Tight coupling of aerosol and microphysics with radiation is needed!

- Need to change the bulk method to spectral bin method
 - Microphysics
 - Aerosol model
- Chemistry is also very important for interaction with aerosol.

Purpose and plan of our team

The mission of out team

• Main purpose :

Reconstruction of infrastructure of climate modeling toward the peta-scale & post-peta scale

- Basic research (Computational science aim)
 - Suggestion of future framework to climate modeling community through the research with computer science people.
 - Reconsideration of dynamical core
 - Fault torelance, I/O, scalability
- Application research (Scientific aim)
 - Construct more sophisticated physics.
 - For accurate climate assessment.

Sophisticated modeling in physics part

- Upgrading the cloud model
 - Bulk model \rightarrow Bin model
- Upgrading the aerosol model
 - Bulk model (SPRINTARS) \rightarrow bin model
- Implementation of chemical transport model
 - Still, NICAM does not have a chemical model.
- Upgrading the radiation model
 - Plane parallel model (2D) \rightarrow 3d radiation model

Upgrading the microphysics (step by step)

lenge	Method	Application	Prognostic Variables	Cost	Expressible
Chal	Spectral Bin	Single Column Model Idealized Experiment	Each Particle mass (~ 30 size sections)	30 X 30	Turbulence effect on particles Individual particle shape
Default	1Moment Bulk	Weather Forecasting Regional Research Global Climate Research	Mass	1	Mass flux
Latest	2Momen t Bulk	Regional Research	Mass, Number	2 X 2	+Cross-section, Surface Area Effective Radius, Mean Volume
Next	3Momen t Bulk	Regional Research	Mass, Number, Radar Reflectivity	3x3	+ Broadness of drop spectra

Upgrading the aerosol model

- Now, NICAM has a bulk aerosol model (old version of SPRINTARS, still bulk)
 - First attempt of cloupling of microphsycs and aerosol in convection-resolving model.
- Next phase : bin aerosol model (extension of SPRINTARS by Suzuki)

Red: coarse aerosols (soil dust, sea sail) Green: fine aerosols (carbonaceous, sulfat White: clouds (OLR)

1-8, 2006

Suzuki et al. 2008, GRL

25

Implementation of chemical model

Schematic figure of the new model (phase #2)

Pollutant Assessment by GCRM+Chemistry

We can study Long Term Transportation resolving Emission, Liquid Phase Reaction, Transportation, and Deposition over the globe!

Basic research for the post-Petaflops

- Improvement of NICAM dynamical core itself
 - Current DC:
 - Icosahedral grid(quasi-homogeneous)
 - Vertical discretization : terrainfollowing coordinate
 - Horizontal A-type grid
 - Future plan
 - Topologically flexible configuration based on Icosahedral grid
 - Vertical discretization : cut-cell method
 - Horizontal B or C type staggard grid? or other?

Basic research for the post-Petaflops(2)

- Trends of architecture and problem
 - Many core / narrow band width per core
 - Interconnection topology
 - A kind of crossbar is unrealistic.
 - I/O bottle neck
 - Fault torelance
- Question : Getting a good scalability on future machine?
 - NICAM is basically built up, suitable to massively parallel computer.
 - However, is it true on the future computer system?
 - Reconstruction of dynamical core both in the viewpoints of numerical scheme and computer evironment

Post-NICAM or NICAM version 2

Schematic figure of 2d-decomposition of NICAM

Summary

- Computational Climate Science Research Team:
 - Suggests the strategy of climate modeling in the future computer environment (post-peta scale)
 - Tightly collaborating with computer science researcher, we will reconstruct the prototype of modeling framework.
 - E.g. tackling to problem of scalability, I/O, and fault torelance
 - Develop the advanced algorithm of climate model
 - Sophisticates physical components such as radiation, aerosol, cloud microphysics, and chemistry
 - Precise assessment of role of clouds in the climate, including the aerosol direct/indirect effects.

Feedback and provide our knowledge and results to climate/meteorological community.