

Collaborative Research between

DoE Labs and Tokyo Tech GSIC on
Extreme Scale Computing -

Success Stories
	Satoshi Matsuoka

Professor
Global Scientific Information and Computing (GSIC) Center

Tokyo Institute of Technology
Fellow, Association for Computing Machinery (ACM)　& ISC

AICS Symposium

AICS-Riken, Kobe Japan
20160222

Successful Model of DoE Lab / Tokyo
Tech Collabora8on	
•  1.	 Ini'al	 agreement	 on	 collabora'on	 area	 w/DoE	 group	

•  Funding	 on	 both	 sides	 not	 mandated	 but	 desirable	

•  2.	 Send	 a	 Ph.D.	 guinea	 pig	 student	 for	 short-‐term	 (2mo)	
exploratory	 hard	 labor	 internship	

•  3.	 Usually	 Tokyo	 Tech	 student	 performs	 extremely	 well	 =>	
tangible	 collabora've	 research	 advance	

•  4.	 Student	 asked	 back	 for	 longer-‐term	 (6	 mo	 or	 greater)	
more	 hard	 labor	 internship	

•  5.	 Papers	 published,	 OSS	 deliverables,	 awards,	 …	
•  6.	 Student	 obtains	 Ph.D.	 =>	 hired	 as	 postdoc	 at	 DoE	 Lab	
(much	 higher	 salary	 than	 being	 hired	 in	 Japan!)	

Tokyo Tech Collabora8on Topics with
DoE Labs in the recent years	
•  Exascale	 Resiliece	 (Leonardo	 Bau'sta-‐Gomez@ANL,	
Kento	 Sato@LLNL)	

• Performance	 of	 OpenMP-‐MPI	 Hybrid	 Programming	 on	
Many-‐Core	 (Abdelhalim	 Amer@ANL)	

• Performance	 Visualiza'on	 (Kevin	 Brown@LLNL)	
• Performance	 Modeling	 of	 Tee	 Code	 with	 ASPEN	
(Keisuke	 Fukuda@ORNL)	

•  Large-‐Scale	 Graph	 Store	 in	 NVM	 	 (Keita	 Iwabuchi@LLNL)	
• OpenACC	 Data	 Layout	 Extensions	 (Tetsuya	
Hoshino@ORNL)	

• More	 to	 come…	

LLNL-‐PRES-‐664262	 4	

[SC11, EuroPar12 & Cluster12 (Leonardo Bautista-‐‑Gomez et al.)]	
Internship at ANL => PostDoc at ANL	

4	

ckpt	 A3	

ckpt	 A2	

ckpt	 A1	

Parity	 1	

Parity	 4	

ckpt	 D3	

ckpt	 D2	

ckpt	 D1	

Node	 1	 Node	 2	 Node	 3	 Node	 4	

•  Diskless	 checkpoint:	
–  Create	 redundant	 data	 across	 local	

storages	 on	 compute	 nodes	 using	 a	
encoding	 technique	 such	 as	 Reed-‐
solomon,	 XOR	

•  Scalable	 by	 using	 distributed	 disks	
–  Can	 restore	 lost	 checkpoints	 on	 a	 failure	

caused	 by	 small	 #	 of	 nodes	 like	 RAID-‐5	

Diskless	 checkpoin'ng	

ckpt	 B3	

ckpt	 B2	

Parity	 2	

ckpt	 B1	

ckpt	 C3	

Parity	 3	

ckpt	 C2	

ckpt	 C1	

Diskless	 checkpoint	 run'me	 library	 using	 Reed-‐Solomon	 encoding	 	

Ø 	 FTI	 implements	 a	 scalable	 Reed-‐
Solomon	 encoding	 algorithm	 by	
u'lizing	 local	 storages	 such	 as	 SSD	
	
Ø 	 FTI	 analyzes	 the	 topology	 of	 the	
system	 and	 create	 encoding	
clusters	 that	 increase	 the	
resilience	

API

Architecture

Modeling

Analysis

FTI (Multilevel checkpointing)

λ FTI is a multilevel checkpointing library with 4 levels of reliability. It has over 8000
lines of c/c++ (with Fortran bindings) under GPL2.1.
λ Download at http://www.github.com/leobago/fti and you can access the
documentation at http://leobago.github.io/fti
λ FTI discovers the location of the processes in the hardware and creates topology-
aware virtual rings to enhance reliability.
λ FTI can protect dynamic datasets, where the size, pointers or structure of the dataset
changes during the runtime.
λ FTI offers the option to dedicate one process per node for fault tolerance to minimize
the checkpoint overhead.
λ While using dedicated processes for asynchronous tasks FTI allows the user to do a
fine-grained selection about the tasks to offload.
λ While using dedicated processes, FTI splits the global communicator and returns a
new communicator to isolate the FT-dedicate ranks.
λ FTI monitors the timestep length and can dynamically adapt the checkpointing
interval during runtime, keeping a consistent state.
λ Applications ported: HACC, CESM (ice module), LAMMPS, GYSELA5D,
SPECFEM3D (CUDA version), HYDRO.

API and code example

int main(int argc, char **argv) {

 MPI_Init(&argc, &argv);
 FTI_Init(“conf.fti”, MPI_COMM_WORLD);

 double *grid;
 int i, steps=500, size=10000;
 initialize(grid);
 FTI_Protect(0, &i, 1, FTI_INTG);
 FTI_Protect(1, grid, size,FTI_DFLT);

 for (i=0; i<steps; i++) {
 FTI_Snapshot();
 kernel1(grid);
 kernel2(grid);
 comms(FTI_COMM_WORLD);
 }

 FTI_Finalize();
 MPI_Finalize();
 return 0;
}

File System: Classic Ckpt.
Slowest of all levels.

The most reliable. Power outage.

RS Encoding: Ckpt. Encoding.
Slow for large checkppoints.

Reliable, multiple node crashes.

Partner Copy: Ckpt. Replication.
Fast copy to neighbor node.

It tolerates single node crashes.

Local Storage: SSD, PCM, NVM.
Fastest checkpoint level.

Low reliability, transient failures.

0

5

10

15

20

25

30

35

40

600 1200 2400 4800 7200 9600

C
he

ck
po

in
tin

g
ov

er
he

ad
 (%

)

Numbers of cores

Weak Scaling Checkpointing
Overhead

No ckpt. FTI L1 FTI L2 FTI L3 FTI L4 PFS ckpt.

λ Weak scaling on MIRA (BG\Q)
λ LAMMPS, Lennard-Jones
simulation of 1.3 billion atoms
λ 512 nodes, 64 MPI processes per
node (32,678 processes)
λ Power monitoring and checkpoint
every ~5 minutes
λ Less than 5% overhead on time to
completion

λ Weak scaling to ~10k proc.
λ CURIE supercomputer in France
λ SSD on the compute nodes
λ HYDRO scientific application
λ Checkpointing every ~6 minutes

FTI scaling

Extreme-Scale Resilience for Billion-Way Parallelism	

•  Coordinators
–  US: Kento Sato, Kathryn Mohror, Adam Moody,

Todd Gamblin, Bronis R. de Sipinski (LLNL)
–  JP: Satoshi Matsuok (Tokyo Tech), Naoya

Maruyama (RIKEN)
•  Description

–  The Tokyo Tech group creates resilience APIs
for transparent and fast recovery, resilience
modeling for optimizing environment, and
resilience architecture for scalable and reliable
checkpoint/restart, then feeds back to SCR, the
production resilience library developed at LLNL.
The production library will be deployed in
TSUBAME3.0

•  How to collaborate
–  Biweekly meeting
–  Student / young researchers exchange

•  Deliverables
–  Pre-standardization of Resilience API	
–  Production resilience interface, SCR

8	

•  Schedule (DRAFT)
2015	 2016	 2017	 2018	 2019	 2020	

Q
1

Q
2

Q
3

Q
4

Q
1

Q
2

Q
3

Q
4

Q
1

Q
2

Q
3

Q
4

Q
1

Q
2

Q
3

Q
4

Q
1

Q
2

Q
3

Q
4

Q
1

Q
2

Q
3

Q
4

TSUBAME2.5 TSUBAME3.0 TSUBAME3.X

Continuous update to production software upon feedbacks

Pre-standardized API Standardized API
Modeling for next generation systems 3.X Modeling for next generation systems 4.X

New arch. for next generation systems 3.X New arch. for next generation systems 4.X

US	 JP	

Ch
ec
kp
oi
nt
	 C
os
t	 a

nd
	 R
es
lie
nc
y	

Lo
w

H

ig
h

Local

Partner

⊕
XOR

Stable
Storage

Level
1

Level
2

Level
3 Parallel file system

Compute nodes

Resilience APIs

Resilience Modeling

Resilience Architecture:

Feedback to production

Scalable Checkpoint/Restart

Burst buffers

LLNL-PRES-665006

Kento Sato
LLNL Internship
Now LLNL PostDoc	

9	

int main (int *argc, char *argv[]) {
 FMI_Init(&argc, &argv);
 FMI_Comm_rank(FMI_COMM_WORLD, &rank);
 /* Application’s initialization */
 while (() < numloop) {
 /* Application’s program */
 }
 /* Application’s finalization */
 FMI_Finalize();
}

FMI	 example	 code	

n = FMI_Loop(…)

•  FMI_Loop	 enables	 transparent	 recovery	 and	 roll-‐
back	 on	 a	 failure	

–  Periodically	 write	 a	 checkpoint	
–  Restore	 the	 last	 checkpoint	 on	 a	 failure	

[IPDPS2014, Kento Sato et al.]	

0

500

1000

1500

2000

2500

0 500 1000 1500

Pe
rf

or
m

an
ce

 (G
Fl

op
s)

of Processes (12 processes/node)

MPI
FMI
MPI + C
FMI + C
FMI + C/R

Chapter 4: FMI: Fault Tolerant Messaging Interface 57

0

50

100

150

200

250

300

350

0 500 1000 1500

C/
R

Th
ro

ug
hp

ut
 (G

B/
se

co
nd

s)

of Processes

Checkpoint (XOR encoding)
Restart (XOR decoding)

Figure 4.13: Checkpoint/Restart scalability with 6 GB/node checkpoints, 12 process-
es/node

the performance of FMI with an MPI implementation. For those experiments, we used

MVAPICH2 version 1.2 running on top of SLURM [76].

4.6.1 FMI Performance

Table 4.2: Ping-Poing Performance of MPI and FMI

1-byte Latency Bandwidth (8MB)
MPI 3.555 usec 3.227 GB/s
FMI 3.573 usec 3.211 GB/s

We measured the point-to-point communication performance on Sierra, and compare

FMI to MVAPICH2. Table 4.2 shows the ping-pong communication latency for 1-byte

messages, and bandwidth for a message size of 8 MB. Because FMI can intercept MPI

calls, we compiled the same ping-pong source for both MPI and FMI. The results show

that FMI has very similar performance compared to MPI for both the latency and the

bandwidth. The overhead for providing fault tolerance in FMI is negligibly small for

messaging.

Because failure rates are expected to increase at extreme scale, checkpoint/restart for

failure recovery must be fast and scalable. To evaluate the scalability of checkpoint/restart

in FMI, we ran a benchmark which writes checkpoints (6 GB/node), and then recovers

P2P communication performance

Even with the high failure rate,
FMI incurs only a 28% overhead

MTBF: 1 minute

 FMI directly writes checkpoints
via memcpy, and can exploit the

bandwidth

API

Architecture

Modeling

Analysis

Example code & Evaluation

LLNL-‐PRES-‐665006	

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

Failure"rate"x1"" Failure"rate"x2" Failure"rate"x10"

Effi
cie

nc
y(

L2"cost"x1"/"Non=blocking"

L2"cost"x1"/"Blocking"

L2"cost"x2"/"Non=blocking"

L2"cost"x2"/"Blocking"

L2"cost"x10"/"Non=blocking"

L2"cost"x10"/"Blocking"

90% of efficiency in most cases	

[SC12, Kento Sato et al.]	

API

Architecture

Modeling

Analysis

•  Objective: Minimize checkpoint overhead to PFS
o  Minimize CPU usage, memory and network bandwidth

•  Proposed method: Implementation and modeling
Non-blocking checkpointing
o  Asynchronously write checkpoints to PFS through Staging nodes using

RDMA
o  Determine the optimal checkpoint interval on the asynchronous

checkpoint scheme

8%

Failure analysis on TSUBAME2.0

8-‐12%	 of	 failures	 s'll	 	
requires	 PFS	 checkpoint	

x Computation state followed by
level-x checkpoint

x Recovery state from level-x
checkpoint

Transition to a recovery state
by level-2 failure

Transition to a computation
state by level-2 recovery

1 2

1

1 1 1

1 1

2

1 1 1

1 1
L2-0

1

1 2

1

1 1 1

1 1

2

1

2 1 1 1

1 1

L2-1 L2-2

Incomplete
segment 1

Complete
segment 2

Incomplete
segment 2

Complete
segment 3

Async.	 checkpoin'ng	 model	

LLNL-‐PRES-‐665006	

IPSJ SIG Technical Report

SSD#2# SSD#3# SSD#4#SSD#1# SSD#1# SSD#2# SSD#3# SSD#4#

Compute#
node#1#

Compute#
node#2#

Compute#
node#3#

Compute#
node#4#

Compute#
node#1##

Compute#
node#2#

Compute#
node#3#

Compute#
node#4#

PFS#(Parallel#file#system)# PFS#(Parallel#file#system)#

A single node

Fig. 2 (a) Left: Flat buffer system (b) Right: Burst buffer system

ging overhead. In addition, if we apply uncoordinated check-
pointing to MPI applications, indirect global synchronization can
occur. For example, process(a2) in cluster(A) wants to send a
message to process(b1) in cluster(B), which is writing its check-
point at that time. Process(a2) waits for process(b1) because pro-
cess(b1) is doing I/O and can not receive or reply to any mes-
sages, which keeps process (a1) waiting to checkpoint with pro-
cess (a2) in Figure 1. If such a dependency propagates across all
processes, it results in indirect global synchronization. Many MPI
applications exchange messages between processes in a shorter
period of time than is required for checkpoints, so we assume
uncoordinated checkpointing time is same as coordinated check-
pointing one in the model in Section 4.

2.4 Target Checkpoint/Restart Strategies
As discussed previously, multilevel and asynchronous ap-

proaches are more efficient than single and synchronous check-
point/restart respectively. However, there is a trade-off between
coordinated and uncoordinated checkpointing given an applica-
tion and the configuration. In this work, we compare the ef-
ficiency of multilevel asynchronous coordinated and uncoordi-
nated checkpoint/restart. However, because we have already
found that these approaches may be limited in increasing applica-
tion efficiencies at extreme scale [29], we also consider storage
architecture approaches.

3. Storage designs
Our goal is to achieve a more reliable system with more effi-

cient application executions. Thus, we consider not only a soft-
ware approach via checkpoint/restart techniques, but also con-
sider different storage architectures. In this section, we introduce
an mSATA-based SSD burst buffer system (Burst buffer system),
and explore the advantages by comparing to a representative cur-
rent storage system (Flat buffer system).

3.1 Current Flat Buffer System
In a flat buffer system (Figure 2 (a)), each compute node has

its dedicated node-local storage, such as an SSD, so this design
is scalable with increasing number of compute nodes. Several
supercomputers employ this flat buffer system [13], [22], [24].
However this design has drawbacks: unreliable checkpoint stor-
age and inefficient utilization of storage resources. Storing check-
points in node-local storage is not reliable because an applica-
tion can not restart its execution if a checkpoint is lost due to a
failed compute node. For example, if compute node 1 in Figure
2 (a) fails, a checkpoint on SSD 1 will be lost because SSD 1
is connected to the failed compute node 1. Storage devices can
be underutilized with uncoordinated checkpointing and message

logging. While the system can limit the number of processes to
restart, i.e., perform a partial restart, in a flat buffer system, lo-
cal storage is not utilized by processes which are not involved in
the partial restart. For example, if compute node 1 and 3 are in a
same cluster, and restart from a failure, the bandwidth of SSD 2
and 4 will not be utilized. Compute node 1 can write its check-
points on the SSD of compute node 2 as well as its own SSD in
order to utilize both of the SSDs on restart, but as argued earlier
distributing checkpoints across multiple compute nodes is not a
reliable solution.

Thus, future storage architectures require not only efficient but
reliable storage designs for resilient extreme scale computing.

3.2 Burst Buffer System
To solve the problems in a flat buffer system, we consider a

burst buffer system [21]. A burst buffer is a storage space to
bridge the gap in latency and bandwidth between node-local stor-
age and the PFS, and is shared by a subset of compute nodes.
Although additional nodes are required, a burst buffer can offer
a system many advantages including higher reliability and effi-
ciency over a flat buffer system. A burst buffer system is more
reliable for checkpointing because burst buffers are located on
a smaller number of dedicated I/O nodes, so the probability of
lost checkpoints is decreased. In addition, even if a large number
of compute nodes fail concurrently, an application can still ac-
cess the checkpoints from the burst buffer. A burst buffer system
provides more efficient utilization of storage resources for partial
restart of uncoordinated checkpointing because processes involv-
ing restart can exploit higher storage bandwidth. For example, if
compute node 1 and 3 are in the same cluster, and both restart
from a failure, the processes can utilize all SSD bandwidth unlike
a flat buffer system. This capability accelerates the partial restart
of uncoordinated checkpoint/restart.

Table 1 Node specification
CPU Intel Core i7-3770K CPU (3.50GHz x 4 cores)

Memory Cetus DDR3-1600 (16GB)
M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 msata 256GB CT256M4SSD3

(Peak read: 500MB/s, Peak write: 260MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Fram
RAID Card Adaptec RAID 7805Q ASR-7805Q Single

To explore the bandwidth we can achieve with only commod-
ity devices, we developed an mSATA-based SSD test system. The
detailed specification is shown in Table 1. The theoretical peak
of sequential read and write throughput of the mSATA-based SSD
is 500 MB/sec and 260 MB/sec, respectively. We aggregate the
eight SSDs into a RAID card, and connect two the RAID cards
via PCE-express(x8) 3.0. The theoretical peak performance of
this configuration is 8 GB/sec for read and 4.16 GB/sec for write
in total. Our preliminary results showed that actual read band-
width is 7.7 GB/sec (96% of peak) and write bandwidth is 3.8
GB/sec (91% of peak) [32] . By adding two more RAID cards,
and connecting via high-speed interconnects, we expect to be able
to build a burst buffer machine using only commodity devices
with 16 GB/sec of read, and 8.32 GB/sec of write throughput.

c⃝ 2013 Information Processing Society of Japan 3

IPSJ SIG Technical Report

SSD#2# SSD#3# SSD#4#SSD#1# SSD#1# SSD#2# SSD#3# SSD#4#

Compute#
node#1#

Compute#
node#2#

Compute#
node#3#

Compute#
node#4#

Compute#
node#1##

Compute#
node#2#

Compute#
node#3#

Compute#
node#4#

PFS#(Parallel#file#system)# PFS#(Parallel#file#system)#

A single node

Fig. 2 (a) Left: Flat buffer system (b) Right: Burst buffer system

ging overhead. In addition, if we apply uncoordinated check-
pointing to MPI applications, indirect global synchronization can
occur. For example, process(a2) in cluster(A) wants to send a
message to process(b1) in cluster(B), which is writing its check-
point at that time. Process(a2) waits for process(b1) because pro-
cess(b1) is doing I/O and can not receive or reply to any mes-
sages, which keeps process (a1) waiting to checkpoint with pro-
cess (a2) in Figure 1. If such a dependency propagates across all
processes, it results in indirect global synchronization. Many MPI
applications exchange messages between processes in a shorter
period of time than is required for checkpoints, so we assume
uncoordinated checkpointing time is same as coordinated check-
pointing one in the model in Section 4.

2.4 Target Checkpoint/Restart Strategies
As discussed previously, multilevel and asynchronous ap-

proaches are more efficient than single and synchronous check-
point/restart respectively. However, there is a trade-off between
coordinated and uncoordinated checkpointing given an applica-
tion and the configuration. In this work, we compare the ef-
ficiency of multilevel asynchronous coordinated and uncoordi-
nated checkpoint/restart. However, because we have already
found that these approaches may be limited in increasing applica-
tion efficiencies at extreme scale [29], we also consider storage
architecture approaches.

3. Storage designs
Our goal is to achieve a more reliable system with more effi-

cient application executions. Thus, we consider not only a soft-
ware approach via checkpoint/restart techniques, but also con-
sider different storage architectures. In this section, we introduce
an mSATA-based SSD burst buffer system (Burst buffer system),
and explore the advantages by comparing to a representative cur-
rent storage system (Flat buffer system).

3.1 Current Flat Buffer System
In a flat buffer system (Figure 2 (a)), each compute node has

its dedicated node-local storage, such as an SSD, so this design
is scalable with increasing number of compute nodes. Several
supercomputers employ this flat buffer system [13], [22], [24].
However this design has drawbacks: unreliable checkpoint stor-
age and inefficient utilization of storage resources. Storing check-
points in node-local storage is not reliable because an applica-
tion can not restart its execution if a checkpoint is lost due to a
failed compute node. For example, if compute node 1 in Figure
2 (a) fails, a checkpoint on SSD 1 will be lost because SSD 1
is connected to the failed compute node 1. Storage devices can
be underutilized with uncoordinated checkpointing and message

logging. While the system can limit the number of processes to
restart, i.e., perform a partial restart, in a flat buffer system, lo-
cal storage is not utilized by processes which are not involved in
the partial restart. For example, if compute node 1 and 3 are in a
same cluster, and restart from a failure, the bandwidth of SSD 2
and 4 will not be utilized. Compute node 1 can write its check-
points on the SSD of compute node 2 as well as its own SSD in
order to utilize both of the SSDs on restart, but as argued earlier
distributing checkpoints across multiple compute nodes is not a
reliable solution.

Thus, future storage architectures require not only efficient but
reliable storage designs for resilient extreme scale computing.

3.2 Burst Buffer System
To solve the problems in a flat buffer system, we consider a

burst buffer system [21]. A burst buffer is a storage space to
bridge the gap in latency and bandwidth between node-local stor-
age and the PFS, and is shared by a subset of compute nodes.
Although additional nodes are required, a burst buffer can offer
a system many advantages including higher reliability and effi-
ciency over a flat buffer system. A burst buffer system is more
reliable for checkpointing because burst buffers are located on
a smaller number of dedicated I/O nodes, so the probability of
lost checkpoints is decreased. In addition, even if a large number
of compute nodes fail concurrently, an application can still ac-
cess the checkpoints from the burst buffer. A burst buffer system
provides more efficient utilization of storage resources for partial
restart of uncoordinated checkpointing because processes involv-
ing restart can exploit higher storage bandwidth. For example, if
compute node 1 and 3 are in the same cluster, and both restart
from a failure, the processes can utilize all SSD bandwidth unlike
a flat buffer system. This capability accelerates the partial restart
of uncoordinated checkpoint/restart.

Table 1 Node specification
CPU Intel Core i7-3770K CPU (3.50GHz x 4 cores)

Memory Cetus DDR3-1600 (16GB)
M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 msata 256GB CT256M4SSD3

(Peak read: 500MB/s, Peak write: 260MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Fram
RAID Card Adaptec RAID 7805Q ASR-7805Q Single

To explore the bandwidth we can achieve with only commod-
ity devices, we developed an mSATA-based SSD test system. The
detailed specification is shown in Table 1. The theoretical peak
of sequential read and write throughput of the mSATA-based SSD
is 500 MB/sec and 260 MB/sec, respectively. We aggregate the
eight SSDs into a RAID card, and connect two the RAID cards
via PCE-express(x8) 3.0. The theoretical peak performance of
this configuration is 8 GB/sec for read and 4.16 GB/sec for write
in total. Our preliminary results showed that actual read band-
width is 7.7 GB/sec (96% of peak) and write bandwidth is 3.8
GB/sec (91% of peak) [32] . By adding two more RAID cards,
and connecting via high-speed interconnects, we expect to be able
to build a burst buffer machine using only commodity devices
with 16 GB/sec of read, and 8.32 GB/sec of write throughput.

c⃝ 2013 Information Processing Society of Japan 3

Interconnect :Mellanox FDR HCA (Model No.: MCX354A-FCBT)
11	

TSUBAME3.0	 EBD	 Prototype	 mSATA	 High	 I/O	 BW,	 low	 power	 &	 cost	

mSATA ☓ 8
(Read: 500MB/s,
Write: 260MB/s)

Adaptec RAID ☓
1

mSATA mSATA mSATA mSATA mSATA mSATA mSATA mSATA

EBD I/O

•  Provide	 POSIX-‐like	 I/O	 interfaces	
–  open,	 read,	 write	 and	 close	
–  Client	 can	 open	 any	 files	 on	 any	 servers	

•  IBIO	 use	 ibverbs	 for	 communica'on	 between	
clients	 and	 servers	

–  Exploit	 network	 bandwidth	 of	 infiniBand	 	

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10 12 14 16

Re
ad

/W
ri

te
 th

ro
ug

hp
ut

 (G
B/

se
c)

of Processes

Read - Peak Read - Local Read - IBIO Read - NFS
Write - Peak Write - Local Write - IBIO Write - NFS

CCGrid2014 Best Paper
Award

(Kento Sato, Kathryn Mohror, Adam Moody,
Todd Gamblin, Bronis R. de Supinski, Naoya

Maruyama & Satoshi Matsuoka)

[CCGrid2014 (Best Paper Award), Kento Sato et al.]	

API

Architecture

Modeling

Analysis

LLNL-‐PRES-‐665006	

Resilience	 modeling	 overview	

12	

To	 find	 out	 the	 best	 checkpoint/restart	 strategy	 for	 systems	 with	 burst	 buffers,	 we	 model	 checkpoin'ng	 strategies	

	

Hi
Compute	
node	

Si

i = 0	 i > 0	

1 2 mi
Hi-1 Hi-1 Hi-1

Storage	 Model: HN {m1, m2, . . . , mN }

Recursive	 structured	 storage	 model	 C/R	 strategy	 model	

Li = Ci + Ei	 Oi =	
Ci + Ei (Sync.) 	

Ii (Async.)	

Ci or Ri =	
<	 C/R	 date	 size	 /	 node	 >☓	 <#	 of	 C/R	 nodes	 per	 Si

*	 >	 	

<	 write	 perf.	 (wi)	 	 >	 	 	 or	 	 	 <read	 perf.	 (ri)	 >	 	

+	

1

1

1 1

2

1 11 1

1

1 1

2

1

2

1 1

11 2

1 1

1 1 1

1 1

1 1 21

k
p0 (t + ck)
t0 (t + ck)

k pi (t + ck)
ti (t + ck)i

k

k i

p0 (rk)

pi (rk)

p0 (rk)
t0 (rk)

ti (rk)

Duration
t + ck rk

No
failure

Failure

λi : i -level checkpoint time

: c -level checkpoint time
rc : c -level recovery time

cc
t : Interval

k 1

k

Successful
 Level-k
recovery

Successful
Computation

Level k
Failures during

recovery

! Level < k
Failures during

recovery

Level k
Failures during
computation or
checkpointing

!

Level < k
Failures during
computation or
checkpointing

1
Successful

Computation

Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T) = e−λT

t0(T) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T) =
λi

λ
(1 − e−λT)

ti(T) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT)
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure

6

k 1

k

Successful
 Level-k
recovery

Successful
Computation

Level k
Failures during

recovery

! Level < k
Failures during

recovery

Level k
Failures during
computation or
checkpointing

!

Level < k
Failures during
computation or
checkpointing

1
Successful

Computation

Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T) = e−λT

t0(T) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T) =
λi

λ
(1 − e−λT)

ti(T) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT)
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure

6

p0 (T)
t0 (T)

: No failure for T seconds
: Expected time when p0 (T)

pi (T)

ti (T)
: i - level failure for T seconds
: Expected time when pi (T)

MLC	 model

[CCGrid2014 (Best Paper Award), Kento Sato et al.]	

IPSJ SIG Technical Report

Table 3 Simulation configuration

level 1 level 2
ri 16 GB/sec 10 GB/sec
wi 8.32 GB/sec 10 GB/sec

Flat buffer Burst buffer
H2 {v1, v2} H2 {1, 1088} H2 {32, 34}
{F1, F2} {2.13 × 10−6, 4.27 × 10−7} {2.13 × 10−6, 7.61 × 10−8}

Checkpoint size per node (D) 5GB
Encoding rate node (e1) 400MB/sec

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 10" 50" 100"

Effi
cie

nc
y(

Scale(factor((xF, xL2)(

Flat"Buffer6Coordinated" Flat"Buffer6Uncoordinated"
Burst"Buffer6Coordinated" Burst"Buffer6Uncoordinated"

Fig. 3 Efficiency of multi-level coordinated and uncoordinated check-
point/restart on a flat buffer system and a burst buffer system

compute nodes.
Failure rates(F) are based on failure analysis using pF3D [8].

The failure analysis shows that average failure rates of a single
compute node requiring LOCAL is 1.96×10−10, XOR is 1.77×10−9,
PFS is 3.93 × 10−10. In a flat buffer system, each failure rate
is calculated by multiplying the each failure rate by the num-
ber of compute nodes, i.e., 1088 nodes. This leads to failure
rates of Failure rate of a single Coastal nodes is We use fail-
ure analysis in 2.14 × 10−7 for LOCAL, 1.92 × 10−6 for XOR,
and 4.27 × 10−7 for PFS. Actually, if a level-i failure rate is
lower than a level-i+ 1 one, the optimal level i checkpoint counts
is zero because level i can be recovery level i + 1 checkpoint,
which is written more frequently than level i. If a compute nodes
failure occurs, a flat buffer system lose checkpoint data on the
failed compute node, so XOR is required to restore the lost check-
point data. Thus, we use 2 level checkpoint/restart where level
1 is XOR, and level 2 is PFS, and each level of failure rate is
{F1, F2} = {2.14 × 10−7 + 1.92 × 10−6, 4.27 × 10−7}.

In a burst buffer system, 34 burst buffer nodes are used, so fail-
ure rate of entire burst buffer nodes is calculated as 6.67 × 10−8,
failure rate requiring PFS as 1.33 × 10−8. Even on a com-
pute nodes failure, a burst buffer nodes can keep checkpoint
data, so LOCAL checkpoint is enough to tolerate a compute node
failure. Thus, we use 2 level checkpoint/restart where level 1
is LOCAL, and level 2 is PFS, and each level of failure rate is
{F1, F2} = {2.14×10−7 +1.92×10−6, 6.28×10−8 +1.33×10−8}
for burst buffer system.

5.2 Results
At extreme systems will be larger, overall failure rates and

checkpoint size are expected to increase. To explore the effects,
we increase failure rates and level 2 checkpoint costs by factors
of 1, 2, 10, 50 and 100, and compare efficiency between multi-
level coordinated and uncoordinated checkpoint/restart on a flat
buffer system and a burst buffer system. We do not change level
1 checkpoint cost, since the performance of flat and burst buffer
is expected to scale with system size.

As Figure 3 shows the efficiency under different failure rates
and checkpoint costs. When we computes the efficiency, we op-
timize level-1 and 2 checkpoint frequency (v1 and v2), and inter-
val between checkpoints (T) using our multi-level asynchronous
checkpoint/restart model, which yields the maximal efficiency.
The burst buffer system always achieves higher efficiency than
the flat buffer system. The efficiency gap becomes more apparent
with higher failure rates and higher checkpoint cost because the
burst buffer system integrate checkpoints into the fewer number
of burst buffer nodes than compute nodes, which decrease proba-
bility of losing checkpoints, and restarting from a slower PFS.

Table 4 Allowable message logging overhead

Flat buffer Burst buffer
scale factor Allowable message scale factor Allowable message

logging overhead logging overhead
1 0.0232% 1 0.00435%
2 0.0929% 2 0.0175%

10 2.45% 10 0.468%
50 84.5% 50 42.0%
100 ≈ 100% 100 99.9%

The efficiency in Figure 3 does not include message logging
overhead, so validity of uncoordinated checkpoint/restart depends
on degree of message logging overhead. Table 4 shows allowable
message logging overhead. To achieve higher efficiency than co-
ordinated checkpoint/restart, the logging overhead must be below
a few percent in a current and a 10 times scaled system. In sys-
tems whose failure rates and checkpoint costs is 50 times higher
than a current system, uncoordinated checkpoint/restart is neces-
sary even with high logging overhead. By using uncoordinated
checkpoint/restart, we can leverage a burst buffer, and achieve
70% of efficiency even on two order of magnitude larger scale
systems because partial restart of uncoordinated checkpoint can
exploit bandwidth of both burst buffers and a PFS, and accelerate
restart time.

Building a reliable data center or supercomputer, and maxi-
mizing system efficiency are significant given fixed amount of
cost. To explore which tiers of storage can impact system ef-
ficiency improvement, we increase performance of each tier of
storage failure by factors of 1, 2, 10 and 20. Figure 4 shows
efficiency in increasing scale factor of performance of level-1
checkpoint/restart in 100 times scaled systems in Figure 3. As
shown, improvement of flat buffer and burst buffer performance
does not impact the system efficiency. But, as in Figure 5, in-
creasing PFS performance improve the system efficiency, and we
can achieve over 80% efficiency with both coordinated and unco-
ordinated checkpoint/restart on the burst buffer system. The both

c⃝ 2013 Information Processing Society of Japan 5

MTBF = days a day 2, 3H 1H

API

Architecture

Modeling

Analysis

LLNL-‐PRES-‐665006	

Publications

•  Kento Sato, Kathryn Mohror, Adam Moody, Todd Gamblin,
Bronis R. de Supinski, Naoya Maruyama and Satoshi
Matsuoka, "A User-level InfiniBand-based File System
 and Checkpoint Strategy for Burst Buffers", In Proceedings
 of the 14th IEEE/ACM International Symposium on Cluster,
 Cloud and Grid Computing (CCGrid2014), Chicago, USA,
May, 2014. (Best Paper Award !!)

•  Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi
Matsuoka, "FMI: Fault Tolerant Messaging Interface for Fast and Transparent Recovery", In Proceedings of the
International Conference on Parallel and Distributed Processing Symposium 2014 (IPDPS2014), Phoenix, USA, May,
2014.

•  Kento Sato, Satoshi Matsuoka, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski and Naoya
Maruyama, "Burst SSD Buffer: Checkpoint Strategy at Extreme Scale", IPSJ SIG Technical Reports 2013-HPC-141,
Okinawa, Sep, 2013

•  Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi
Matsuoka, "Design and Modeling of a Non-blocking Checkpointing System", In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis 2012 (SC12), Salt Lake, USA, Nov,
2012.

•  Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi
Matsuoka, "Towards a Light-weight Non-blocking Checkpointing System", In HPC in Asia Workshop in conjunction
with the International Supercomputing Conference (ISC'12), Hamburg, Germany, June, 2012 (Poster)

•  Kento Sato,Adam Moody,Kathryn Mohror,Todd Gamblin,Bronis R. de Supinski, Naoya Maruyama and Satoshi
Matsuoka, "Design and Modeling of a Non-Blocking Checkpoint System", In ATIP - A*CRC Workshop on Accelerator
Technologies in High Performance Computing, Singapore, March, 2012. (Poster)

•  Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi
Matsuoka, "Design and Modeling of an Asynchronous Checkpointing System", IPSJ SIG Technical Reports 2012-
HPC-135 (SWoPP 2012), Tottori, Aug, 2012.

•  Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi
Matsuoka, "Towards an Asynchronous Checkpointing System", IPSJ SIG Technical Reports 2011-ARC-197 2011-
HPC-132 (HOKKE-19), Hokkaido, Nov, 2011.

IEEE/ACM CCGrid2014
Best Paper Award

LLNL-‐PRES-‐664262	

Tokyo Tech Billion Way Relience Project	

Graph500 ランキング 3位
大規模グラフ処理ベンチマークGraph500 の
TSUBAME 2.0 における挑戦
鈴村 豊太郎　　上野 晃司

SC'11テクニカル・ペーパー
Physis: ヘテロジニアススパコン向けステンシル
計算フレームワーク
丸山 直也　　野村 達男　　佐藤 賢斗　　松岡 聡

SC'11テクニカル・ペーパー（最高得点獲得）
FTI :ヘテロジニアススパコン向け耐障害インタフェース
～100TFlops超　東北地方太平洋沖地震シミュレーション ～
Leonardo Bautista-Gomez Dimitri Komatitch 丸山 直也 坪井 誠司
Franck Cappello 松岡 聡 中村 武

14

23

18

SC11 Technical Paper
Perfect Score Award
(Leonardo Batista Gomez, Seiji

Tsuboi, Dimitri Komatitsch, Frank
Cappello, Naoya Maruyama &

Satoshi Matsuoka)

NVM Energy Model
[FTXS2013]

FTI: Fault Tolerance Interface
[SC11, EuroPar12, Cluster12]

FMI: Fault Tolerant Messaging Interface
[IPDPS2014]

Fault-in-Place Network Architecture
[SC14]

NVCR: GPU C/R library
[HCW2011]

Async. C/R
[SC12]

Async. Model
[SC12]

API
software

Architecture

Model

Analysis Failure Monitoring
[IPSJ Tech Report]

FP Compression
[Submitted to IPDPS2015]

API to resource manager
& scheduler

Failure Prediction

Failure Analysis
w/ Machine Learning

NVM Durability model

Standardization of
failure log

IBIO: Infiniband I/O
[CCGrid2014]

Burst buffer architecture
[CCGrid 2014]

Storage Model
[CCGrid2014]

CCGrid2014 Best Paper
Award

(Kento Sato, Kathryn Mohror, Adam Moody,
Todd Gamblin, Bronis R. de Supinski, Naoya

Maruyama & Satoshi Matsuoka)

§  Visits	
–  Abdelhalim	 Amer,	 PhD.	 Student	 at	 Tokyo	

Ins'tute	 of	 Technology	
–  Sept	 2013	 –	 Nov	 2013	 (Tokyo	 Tech	 à	 ANL)	

•  Characterizing	 lock	 conten'on	 in	 mul'threaded	
MPI	 applica'ons	

–  Nov	 2013	 –	 Apr	 2013	 (ANL	 à	 Tokyo	 Tech)	
•  Develop	 hybrid	 MPI	 kernels	 relying	 on	

mul'threaded	 communica'on	

15	

OpenMP-MPI Performance collaboration w/ANL -
Abdelhalim Amer

–  Apr	 2014	 -‐	 Sep2014	 (Tokyo	 Tech	 à	 ANL)	
•  Large	 scale	 analysis	 of	 hybrid	 MPI	 graph	 traversal	 kernels	
•  Characterize	 and	 mi'gate	 thread	 arbitra'on	 issues	 to	 enhance	 communica'on	

progress	

–  Apr	 2015	 ~:	 Postdoc	 at	 ANL.	 Planning	 for	 future	 collabora'ons/visits	
§  Outcome	

–  Two	 publica'ons	 (PPoPP’15	 and	 PPMM’)	
–  Sorware	 contribu'on	 to	 the	 MPICH	 library	
–  Ongoing	 collabora'on	

Abdelhalim Amer (Halim)
Postdoctoral Researcher, ANL

Research and Achievements Summary

§  Characterizing	 state-‐of-‐the-‐art	 MPI+Threads	 run'mes	
–  Applica'on	 and	 run'me	 perspec'ves	
–  Large	 scale	 analysis	 (512K	 cores	 on	 Mira)	

§  Exposing	 thread-‐synchroniza'on	 issues	 the	 MPI-‐run'me	
§  Develop	 MPI-‐aware	 thread-‐synchroniza'on	 to	 improve	 run'me	 performance	

Pros	 and	 Cons	 of	 MPI+Threads	 at	
Large	 Scale?	

Run:me	 Conten:on	 in	
Mul:threaded	 MPI	 due	 to	

Thread-‐Safety	 	

Reducing	 Conten:on	 by	
Improving	 Cri:cal	 Sec:on	

Arbitra:on	 [ACM	 PPoPP’	 15]	

Characterizing	 Large	 Scale	 	 MPI	 +	
Threads	 [PPMM’15]	

A
pp

s
+

R
un

tim
e

R
un

tim
e

Sy
st

em

[ACM	 PPOPP’15]	 Abdelhalim	 Amer,	 Huiwei	 Lu,	 Yanjie	 Wei,	 Pavan	 Balaji	 and	
Satoshi	 Matsuoka.	 MPI+Threads:	 Run:me	 Conten:on	 and	 Remedies.	 ACM	
SIGPLAN	 Symposium	 on	 Principles	 and	 Prac:ce	 of	 Parallel	 Programming	 (PPoPP)	
[PPMM’15]	 Abdelhalim	 Amer,	 Huiwei	 Lu,	 Pavan	 Balaji,	 and	 Satoshi	 Matsuoka.	
Characterizing	 MPI	 and	 Hybrid	 MPI+Threads	 Applica:ons	 at	 Scale:	 Case	 Study	 with	
BFS.	 Workshop	 on	 Parallel	 Programming	 Model	 for	 the	 Masses	 (PPMM)	

This small, synthetic graph was
generated by a method called
Kronecker multiplication. (Jeremiah
Willcock, Indiana University)

Large-Scale MPI+Threads Graph Analytics
Characterization on BG/Q [PPMM’15]

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

128 1024 8192 65536 524288

Pe
rf

or
m

an
ce

 (G
TE

PS
)

Number of Cores

Processes

Hybrid

0

2

4

6

8

10

12

14

16

128 1024 8192 65536 524288

Pe
rf

or
m

an
ce

 (G
TE

PS
)

Number of Cores

MPI-Only
Hybrid
MPI-Only-Optmized
Hybrid-Optmized

Core-to-Core vs. Node-to-
Node Data Movement:
•  MPI+Threads does better

but cannot do miracles!

Process-level scalability
optimizations:
•  MPI+Threads

experiences overheads

0

5

10

15

20

25

128 1024 8192 65536 524288
Pe

rf
or

m
an

ce
 (G

TE
PS

)
Number of Cores

Processes+LP+IB
Hybrid+LP+IB
Hybrid+LP+IB+FG

Thread-synchronization
optimization:
•  Fine-grained locking

Communication Progress and Thread-Synchronization:
Beware of Unbounded-Unfairness [PPoPP’15]

§  FIFO	 locks	 overcome	 the	
shortcomings	 of	 mutexes	

§  Polling	 for	 progress	 can	 be	 wasteful	
(wai:ng	 does	 not	 generate	 work!)	

§  Priori'zing	 issuing	 opera'ons	
•  Feed	 the	 communica'on	 pipeline	
•  Reduce	 chances	 of	 wasteful	 internal	

process	 (e.g.	 more	 requests	 on	 the	 fly	
è	 higher	 chances	 of	 making	
progress)	

MPI_CALL_ENTER	

MPI_CALL_EXIT	

CS_ENTER	

CS_ENTER	

CS_EXIT	
CS_EXIT	

YIELD	

OPERATION	
COMPLETE?	

YES	

NO	
2	

1	

Time
Penalty

Fairness (FIFO) reduces wasted
resource acquisitions

Time
Penalty

Pthread Mutex

FIFO Lock

Adapt arbitration to maximize work

65536

131072

262144

524288

1 16 256 4096

 R
at

e
(M

es
sa

ge
s/

s)

Message Size (Bytes)

Mutex
Ticket
Priority

Message Rate between two 36
Haswell cores nodes SWAP-Assembler Genome assembly application

4

16

64

256

1024

4 32 256 2048

Ex
ec

ut
io

n
Ti

m
e

[s
]

Number of Cores

Mutex
Ticket
Priority

2	

Insightul	 Analysis	 of	 Performance	 Metrics	 on	
Fat-‐tree	 Networks[Kevin	 Brown,	 ICPADS15]	

source	
port	

dest.	
port	

traffic	
(kb)	

a	 b	 5	
b	 a	 15	

process	 2	

app	

Open	 MPI	
library	

network	
hardware	

app	

Open	 MPI	
library	

network	
hardware	

process	 1	 network	 communica'on	
profile	

Profiler	
Non-‐intrusive	 collec'on	 of	
performance	 metrics	 w/	
our	 ibprof	 profiler	
•  Low	 overhead	
•  Captures	 links	 traffic	

Hardware-‐centric	
traffic	 visualiza'on	
BoxFish	 for	 FatTree	

compute	
nodes	

switches	

1	

Tree-‐topology	 viz.	 design	

Insightul	 Analysis	 of	 Performance	 Metrics	
on	 Fat-‐tree	 Networks	

3	 Tree-‐topology	 viz.	 design	 Adjacency	 matrix	 viz.	 design	

Each	 element	 represents	 a	 link	
ü  No	 occlusion	 of	 data	
ü  Space	 efficient	 design	
ü  More	 link	 design	 op'ons	

Square	

Bisected	 square	
Triangle	 pair	

Data	 (traffic,	 load,	 etc.)	 is	 encoded	 in	 the	 size,	 shape,	 color,	 and/or	 hue	 of	 the	 links	

ibprof’s	 Profiling	 Overhead	

21	
21 25 210 215 220 223

0

20

40

60

80

100

Message Size (bytes)

O
ve

rh
ea

d
(%

)

bcast
reduce
ping-pong

21 25 210 215 220 223

�2

0

2

4

6

8

10

Message Size (bytes)

alltoall scatter
gather allgather
allreduce

(a) Intel MPI Bencharmark

ft is cg mg bt sp lu

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

-32ms

56ms

0.3ms

-39ms

14ms
47ms 58ms

Kernels & Psuedo Apps

kernel

pseudo app

(b) NAS Parallel Benchmarks

Fig. 5. Runtime overhead of communication profiling. Subfigure (5a) shows the percentage increase in communication latency for the various IMB benchmarks.
These results are separated into two charts for increased readability. Subfigure (5b) shows the increase in runtime of NPB kernels and pseudo applications. The
height of each bar represents the overhead as a percentage of the communication runtime and the bars annotation states the actual change in communication
runtime.

2) Increase in Communication Latency: Figure 5 shows the
results of our experiments. These graphs represent the increase
in communication latency caused by our profiler and does not re-
flect the time for dumping profiles. Results were averaged across
all 100 pairs of runs with standard errors <1% in all cases. The
average overhead was 11.6%, 3.4%, and 1.3% for MPI_Bcast,
MPI_Reduce, and MPI_Scatter, respectively, over all
message sizes while other IMB benchmarks averaged below
1% overhead. Similarly, all NPB benchmarks averaged below
1%, with the communication-bound FT benchmark reporting
the highest value of 0.46%.

The averaged runtime differences were in the order of
microseconds for the IMB benchmarks and milliseconds for
the NPB benchmark. Because such small differences could
be attributed to jitters in the system, we ran similar exper-
iments at different times over several days for verification.
Similar trends were observed in the results with some runs
occasionally reporting negative overheads and all overheads
remaining negligible except for spikes in the MPI_Bcast
and MPI_Reduce results for the message sizes shown. We
confirmed that the spike in the MPI_Bcast can be attributed
to Open MPI switching from the send/receive semantics to
RDMA pipeline protocol when the message size surpasses
256 KB. We ran a set of MPI_Bcast trials with the RDMA
pipeline size limit changed from 256 KB to 1 MB and the
pipeline send length changed from 1 MB to 4 MB. As expected,
we observed additional spikes for messages between 1 MB and
4 MB in size. Further research is being planned to ascertain
the cause of this phenomenon.

3) Increase in Application Runtime: The total increase in
application runtime when ibprof is used is equal to the
increase in communication latency plus the time taken to write
profiles. On our system, the time taken for a complete profile
dump was less than 1 seconds, irrespective of the application
or communication pattern. This time is dependent on the IO
subsystem’s performance, which is beyond the scope of this
work.

VI. CASE STUDY

In this Section, we showcase the usability of our profiling
approach and analysis toolchain. We analyze the execution of

samplesort, a popular sorting algorithm for parallel systems,
and we also compare the performance of different MPI library
versions. Experiments were conducted on TSUBAME2.5, which
utilizes two independent IB subnets and each compute node
has a link to each subnet.

A. Visualizing Traffic Patterns and Contention in Samplesort

Samplesort, as described in [19], is a sorting algorithm for
distributed memory environments. The main idea behind the
algorithm is to find a set splitters to partition the input keys into
p buckets corresponding to p processes in such a way that every
element in the i

th bucket is less than or equal to each of the
elements in the (i+ 1)th bucket. Because splitters are selected
randomly, the resulting bucket sizes may be uneven. This could
result in communication and computation imbalances when
keys are shuffled and sorted, respectively.

For our experiment, we used the samplesort code presented
in [19] 1. We executed samplesort with 128 MPI processes,
using a 1:1 process-to-node mapping. Each process started
with 1 GB of unsorted integers, randomly generated with a
uniform distribution. The same random number seed was
used in all cases. Fig. 6 shows a typlical process-centric
visualization of samplesort’s main communication routines over
128 nodes using Paraver. We are unable to extract any network
performance insights from this and other similar visualizations
that are generated using PMPI-based instrumentation tools.

1) Performance Analysis using our ibprof Profiler and
our Boxfish Module: We profiled an execution of samplesort
using ibprof and visualized the network traffic in our
Boxfish fat tree module. Segments of the code were manually
instrumented to enable the identification of the code block
where the all-to-all key exchange is conducted in order to
perform a meaningful analysis. Fig. 7 shows the network traffic
generated by the main communication routines of samplesort.
This section of the profile reflects the traffic generated by the
segment of the program highlighted in Fig. 6.

The red links that are visible in area C of Fig. 7 represent
links that were carrying the most traffic during the commu-
nication block of the code. By exploring the visualization

1Source code: http://users.ices.utexas.edu/˜hari/talks/hyksort.html

21 25 210 215 220 223

0

20

40

60

80

100

Message Size (bytes)

O
ve

rh
ea

d
(%

)

bcast
reduce
ping-pong

21 25 210 215 220 223

�2

0

2

4

6

8

10

Message Size (bytes)

alltoall scatter
gather allgather
allreduce

(a) Intel MPI Bencharmark

ft is cg mg bt sp lu

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

-32ms

56ms

0.3ms

-39ms

14ms
47ms 58ms

Kernels & Psuedo Apps

kernel

pseudo app

(b) NAS Parallel Benchmarks

Fig. 5. Runtime overhead of communication profiling. Subfigure (5a) shows the percentage increase in communication latency for the various IMB benchmarks.
These results are separated into two charts for increased readability. Subfigure (5b) shows the increase in runtime of NPB kernels and pseudo applications. The
height of each bar represents the overhead as a percentage of the communication runtime and the bars annotation states the actual change in communication
runtime.

2) Increase in Communication Latency: Figure 5 shows the
results of our experiments. These graphs represent the increase
in communication latency caused by our profiler and does not re-
flect the time for dumping profiles. Results were averaged across
all 100 pairs of runs with standard errors <1% in all cases. The
average overhead was 11.6%, 3.4%, and 1.3% for MPI_Bcast,
MPI_Reduce, and MPI_Scatter, respectively, over all
message sizes while other IMB benchmarks averaged below
1% overhead. Similarly, all NPB benchmarks averaged below
1%, with the communication-bound FT benchmark reporting
the highest value of 0.46%.

The averaged runtime differences were in the order of
microseconds for the IMB benchmarks and milliseconds for
the NPB benchmark. Because such small differences could
be attributed to jitters in the system, we ran similar exper-
iments at different times over several days for verification.
Similar trends were observed in the results with some runs
occasionally reporting negative overheads and all overheads
remaining negligible except for spikes in the MPI_Bcast
and MPI_Reduce results for the message sizes shown. We
confirmed that the spike in the MPI_Bcast can be attributed
to Open MPI switching from the send/receive semantics to
RDMA pipeline protocol when the message size surpasses
256 KB. We ran a set of MPI_Bcast trials with the RDMA
pipeline size limit changed from 256 KB to 1 MB and the
pipeline send length changed from 1 MB to 4 MB. As expected,
we observed additional spikes for messages between 1 MB and
4 MB in size. Further research is being planned to ascertain
the cause of this phenomenon.

3) Increase in Application Runtime: The total increase in
application runtime when ibprof is used is equal to the
increase in communication latency plus the time taken to write
profiles. On our system, the time taken for a complete profile
dump was less than 1 seconds, irrespective of the application
or communication pattern. This time is dependent on the IO
subsystem’s performance, which is beyond the scope of this
work.

VI. CASE STUDY

In this Section, we showcase the usability of our profiling
approach and analysis toolchain. We analyze the execution of

samplesort, a popular sorting algorithm for parallel systems,
and we also compare the performance of different MPI library
versions. Experiments were conducted on TSUBAME2.5, which
utilizes two independent IB subnets and each compute node
has a link to each subnet.

A. Visualizing Traffic Patterns and Contention in Samplesort

Samplesort, as described in [19], is a sorting algorithm for
distributed memory environments. The main idea behind the
algorithm is to find a set splitters to partition the input keys into
p buckets corresponding to p processes in such a way that every
element in the i

th bucket is less than or equal to each of the
elements in the (i+ 1)th bucket. Because splitters are selected
randomly, the resulting bucket sizes may be uneven. This could
result in communication and computation imbalances when
keys are shuffled and sorted, respectively.

For our experiment, we used the samplesort code presented
in [19] 1. We executed samplesort with 128 MPI processes,
using a 1:1 process-to-node mapping. Each process started
with 1 GB of unsorted integers, randomly generated with a
uniform distribution. The same random number seed was
used in all cases. Fig. 6 shows a typlical process-centric
visualization of samplesort’s main communication routines over
128 nodes using Paraver. We are unable to extract any network
performance insights from this and other similar visualizations
that are generated using PMPI-based instrumentation tools.

1) Performance Analysis using our ibprof Profiler and
our Boxfish Module: We profiled an execution of samplesort
using ibprof and visualized the network traffic in our
Boxfish fat tree module. Segments of the code were manually
instrumented to enable the identification of the code block
where the all-to-all key exchange is conducted in order to
perform a meaningful analysis. Fig. 7 shows the network traffic
generated by the main communication routines of samplesort.
This section of the profile reflects the traffic generated by the
segment of the program highlighted in Fig. 6.

The red links that are visible in area C of Fig. 7 represent
links that were carrying the most traffic during the commu-
nication block of the code. By exploring the visualization

1Source code: http://users.ices.utexas.edu/˜hari/talks/hyksort.html

(avg:	 11.6)	
(avg:	 3.4)	

21 25 210 215 220 223

0

20

40

60

80

100

Message Size (bytes)

O
ve

rh
ea

d
(%

)

bcast
reduce
ping-pong

21 25 210 215 220 223

�2

0

2

4

6

8

10

Message Size (bytes)

alltoall scatter
gather allgather
allreduce

(a) Intel MPI Bencharmark

ft is cg mg bt sp lu

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

-32ms

56ms

0.3ms

-39ms

14ms
47ms 58ms

Kernels & Psuedo Apps

kernel

pseudo app

(b) NAS Parallel Benchmarks

Fig. 5. Runtime overhead of communication profiling. Subfigure (5a) shows the percentage increase in communication latency for the various IMB benchmarks.
These results are separated into two charts for increased readability. Subfigure (5b) shows the increase in runtime of NPB kernels and pseudo applications. The
height of each bar represents the overhead as a percentage of the communication runtime and the bars annotation states the actual change in communication
runtime.

2) Increase in Communication Latency: Figure 5 shows the
results of our experiments. These graphs represent the increase
in communication latency caused by our profiler and does not re-
flect the time for dumping profiles. Results were averaged across
all 100 pairs of runs with standard errors <1% in all cases. The
average overhead was 11.6%, 3.4%, and 1.3% for MPI_Bcast,
MPI_Reduce, and MPI_Scatter, respectively, over all
message sizes while other IMB benchmarks averaged below
1% overhead. Similarly, all NPB benchmarks averaged below
1%, with the communication-bound FT benchmark reporting
the highest value of 0.46%.

The averaged runtime differences were in the order of
microseconds for the IMB benchmarks and milliseconds for
the NPB benchmark. Because such small differences could
be attributed to jitters in the system, we ran similar exper-
iments at different times over several days for verification.
Similar trends were observed in the results with some runs
occasionally reporting negative overheads and all overheads
remaining negligible except for spikes in the MPI_Bcast
and MPI_Reduce results for the message sizes shown. We
confirmed that the spike in the MPI_Bcast can be attributed
to Open MPI switching from the send/receive semantics to
RDMA pipeline protocol when the message size surpasses
256 KB. We ran a set of MPI_Bcast trials with the RDMA
pipeline size limit changed from 256 KB to 1 MB and the
pipeline send length changed from 1 MB to 4 MB. As expected,
we observed additional spikes for messages between 1 MB and
4 MB in size. Further research is being planned to ascertain
the cause of this phenomenon.

3) Increase in Application Runtime: The total increase in
application runtime when ibprof is used is equal to the
increase in communication latency plus the time taken to write
profiles. On our system, the time taken for a complete profile
dump was less than 1 seconds, irrespective of the application
or communication pattern. This time is dependent on the IO
subsystem’s performance, which is beyond the scope of this
work.

VI. CASE STUDY

In this Section, we showcase the usability of our profiling
approach and analysis toolchain. We analyze the execution of

samplesort, a popular sorting algorithm for parallel systems,
and we also compare the performance of different MPI library
versions. Experiments were conducted on TSUBAME2.5, which
utilizes two independent IB subnets and each compute node
has a link to each subnet.

A. Visualizing Traffic Patterns and Contention in Samplesort

Samplesort, as described in [19], is a sorting algorithm for
distributed memory environments. The main idea behind the
algorithm is to find a set splitters to partition the input keys into
p buckets corresponding to p processes in such a way that every
element in the i

th bucket is less than or equal to each of the
elements in the (i+ 1)th bucket. Because splitters are selected
randomly, the resulting bucket sizes may be uneven. This could
result in communication and computation imbalances when
keys are shuffled and sorted, respectively.

For our experiment, we used the samplesort code presented
in [19] 1. We executed samplesort with 128 MPI processes,
using a 1:1 process-to-node mapping. Each process started
with 1 GB of unsorted integers, randomly generated with a
uniform distribution. The same random number seed was
used in all cases. Fig. 6 shows a typlical process-centric
visualization of samplesort’s main communication routines over
128 nodes using Paraver. We are unable to extract any network
performance insights from this and other similar visualizations
that are generated using PMPI-based instrumentation tools.

1) Performance Analysis using our ibprof Profiler and
our Boxfish Module: We profiled an execution of samplesort
using ibprof and visualized the network traffic in our
Boxfish fat tree module. Segments of the code were manually
instrumented to enable the identification of the code block
where the all-to-all key exchange is conducted in order to
perform a meaningful analysis. Fig. 7 shows the network traffic
generated by the main communication routines of samplesort.
This section of the profile reflects the traffic generated by the
segment of the program highlighted in Fig. 6.

The red links that are visible in area C of Fig. 7 represent
links that were carrying the most traffic during the commu-
nication block of the code. By exploring the visualization

1Source code: http://users.ices.utexas.edu/˜hari/talks/hyksort.html

•  All	 NPB	 apps	 averaged	 <	 1%	 	
•  Peak	 overhead	 occurred	 with	
MPI_Bcast	 when	 Open	 MPI	
switched	 from	 send/recv	 to	 RDMA	

•  All	 other	 collec'ves	 averaged	 <	 5%	

O
ve

rh
ea

d
(%

)
O

ve
rh

ea
d

(%
)

Intel	 MPI	 Benchmarks	 NAS	 Parallel	 Benchmarks	

Process-‐centric	 Visualiza'ons	 vs.	 Boxfish	
Fat	 Tree	 Visualiza'on	

22	

Paraver	
Does	 not	 show	 network	
traffic	 hotspots	

Boxfish	
Capable	 of	 highligh'ng	 network	
hotspots	 and	 traffic	 pazerns	

Samplesort	 on	 128	 nodes	 of	 TSUBAME2.5	

vs.	

Visualizing	 the	 Traffic	 Pazerns	 of	 Different	
Open	 MPI	 Library	 version	

23	

v1.82	

v1.65	
Open	 MPI	 v1.65	 balances	
traffic	 over	 both	 subnets	
ofTSUBAME2.5	 with	 the	
default	 configura'on	

Open	 MPI	 v1.82	 uses	 a	 single	
subnet	 per	 opera'on	 with	 the	

default	 configura'ons	 on	
TSUBAME2.5	

Publica'ons	

Poster	 (Prior	 to	 internship	 but	 using	 LLNL’s	 work):	
Kevin	 A.	 Brown,	 Jens	 Domke,	 and	 Satoshi	 Matsuoka.	 “Tracing	
Data	 Movements	 within	 MPI	 Collec>ves”.	 In	 Proceedings	 of	
the	 21st	 European	 MPI	 Users'	 Group	 Mee'ng	 (EuroMPI/ASIA	
'14).	

	
Paper:	

Brown,	 K.A.;	 Domke,	 J.;	 Matsuoka,	 S.,	 "Hardware-‐Centric	
Analysis	 of	 Network	 Performance	 for	 MPI	 Applica>ons”.	 In	
2015	 IEEE	 21st	 Interna'onal	 Conference	 on	 Parallel	 and	
Distributed	 Systems	 (ICPADS)	

Challenges to model a tree-‐based irregular
applica8ons with Aspen

Keisuke	 Fukuda	 (Ph.D	 Student)	
Research	 Internship	 @ORNL	 	

•  2013	 Sep-‐Nov	
•  2014	 Oct-‐Nov	

•  Now	 long-‐term	 intern	 at	 AICS	 2015	 Oct-‐2016	 Sep	

Challenges in modeling irregular applica8ons	
•  Performance	 modeling	 of	 applica'on	 is	 used	 to:	

•  Run'me	 (power,	 memory)	 es'ma'on	
•  Hardware/machine	 design	

•  Conven'onal,	 ad-‐hoc	 mathema'cal	 modeling	 is	 not	 suitable	 if	 irregular	 data	
structure	 (e.g.	 tree)	 and	 control	 flows	 affect	 the	 performance	

•  How	 to	 model	 such	 applica'ons?	
•  We	 focus	 on	 the	 Fast	 Mul'pole	 Method	

	

0	

1	

2	

3	

4	

0	 200	 400	 600	
Ti
m
e	
[s
]	

Ncrit	

La~ce	

Plummer	

(this figure will be shown and�
described again)�

Each plot point represents�
a particular shape of tree�

Performance variation�
caused by “shape” of a tree�
for a fixed number of particles�

Examples of tree shapes�

26	

• Applied	 Aspen	 modeling	 language	 to	 FMM	
•  Run'me	 es'ma'on	 for	 la~ce,	 sphere,	 plummer	 distribu'on,	
Ncrit	 =	 16〜512	

•  Es'ma'on	 errror	 was	 7-‐13%	 error	 in	 avg.	

• Room	 for	 op'miza'on	 for	 find-‐grained	 kernels	 and	 in	
deriving	 constants	

• Aspen	 requires	 large	 'me	 and	 memory	 to	 evaluate	 the	
models	

27	

Whole-‐app model of ExaFMM	

28	

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

16
"

32
"

48
"

64
"

80
"

96
"

11
2"

12
8"

14
4"

16
0"

17
6"

19
2"

20
8"

22
4"

24
0"

25
6"

27
2"

28
8"

30
4"

32
0"

33
6"

35
2"

36
8"

38
4"

40
0"

41
6"

43
2"

44
8"

46
4"

48
0"

49
6"

51
2"

Ti
m
e%
[s
]�

Ncrit�

Aspen%Model%vs.%Actual%run8me%
La:ce%distribu8on%%50,000%par8cles�

Model"

Actual"

Error: avg 7.7%, max 33.2%, min 3.7%�

Whole-‐app model of ExaFMM	

29	

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

16
"

32
"

48
"

64
"

80
"

96
"
11
2"

12
8"

14
4"

16
0"

17
6"

19
2"

20
8"

22
4"

24
0"

25
6"

27
2"

28
8"

30
4"

32
0"

33
6"

35
2"

36
8"

38
4"

40
0"

41
6"

43
2"

44
8"

46
4"

48
0"

49
6"

51
2"

Ti
m
e[
s]
�

Ncrit�

Aspen/Model/vs./Actual/run8me"
Sphere/distribu8on//50,000/par8cles/

�

Model"

Actual"

Error: avg 12.8%, max 26.9%, min 4.0%�

Dynamic Graphs (temporal graph)
•  the structure of a graph

changes dynamically over time
•  many real-world graphs are

classified into dynamic graph

•  Most studies for large graphs have not focused on a dynamic
graph data structure, but rather a static one, such as Graph 500

•  Even with the large memory capacities of HPC systems, many
graph applications require additional out-of-core memory
(this part is still at an early stage)

Sparse Large Scale-free
•  social network, genome

analysis, WWW, etc.
•  e.g., Facebook manages

1.39 billion active users
as of 2014, with more
than 400 billion edges

Distributed Large-Scale Dynamic Graph Data Store
Keita Iwabuchi1, 2, Scott Sallinen3, Roger Pearce2,

Brian Van Essen2, Maya Gokhale2, Satoshi Matsuoka1
1.  Tokyo Institute of Technology (Tokyo Tech)

2. Lawrence Livermore National Laboratory (LLNL)
3. University of British Columbia

Source:	 Jakob	 Enemark	 and	 Kim	 Sneppen,	 “Gene	 duplica'on	 models	 for	 directed	 networks	
with	 limits	 on	 growth”,	 Journal	 of	 Sta's'cal	 Mechanics:	 Theory	 and	 Experiment	 2007	

Controller /
Partitioner

Comp.
Node

Comp.
Node

Distributed Dynamic Graph Data
Store

share.sandia.gov

Comp.
Node

Graph Application

Comp.
Node

Comp.
Node

Developing a distributed dynamic graph store for data intensive
supercomputers equipped with locally attached NVRAM

Streaming	 edges	 	

Degree Aware Dynamic Graph Data Store
(DegAwareRHH)

Robin Hood Hashing1

[1] P. Celis, “Robin hood hashing,” Ph.D. dissertation, 1986. Designed to
maintain a small
average probe
distance

w1

w5 v1
p1

v3
p3

w2

v4
p4

w3

w6

v2
p2

v1 p1

v2 p2

v3 p3

v4 p4

Vertex-table

v2 w1 v3 w2

v4 w3

v1 w4 v3 w5

Edge-list

v: vertex
p: vertex property data
w: edge weight

Vertex-table : tree, hash table
Edge-list : vector, linked-list

v1 v4
p1 p4

v1 v3
w5 w6

{v2,v4
}

{v3,v4
}

p2 p3
w3 w4

w4

Low-‐degree	
table	

Mid-‐high	 degree	 table	

DegAwareRHH
Degree Aware Graph Data Structure

Each	 table	 is	
composed	 of	 Robin	
Hood	 Hashing	

Extend	 DegAwareRHH	 for	 distributed-‐memory	 using	 a	 async.	
MPI	 communica'on	 framework[2][3]	

•  Degree	 aware	 data	 structures,	 where	 low-‐degree	 ver'ces	 are	
compactly	 represented	

•  Use	 Robin	 Hood	 Hashing[1]	 because	 of	 its	 locality	 proper'es	 to	
minimize	 the	 number	 of	 accesses	 to	 NVRAM,	 reducing	 page	 misses.	 	

v2 v3
w1 w2

Vertex	 ID	
Vertex	 property	
Edge	 weight	

[2] R. Pearce, et al, “Scaling techniques for massive scale-free graphs in distributed (external) memory,”
IPDPS’ 13
[3] R. Pearce, et al, “Faster parallel traversal of scale free graphs at extreme scale with vertex delegates,
” SC’ 14

RMAT 25 graph: #vertices 32M, #edges 1B

#nodes	 (24	 processes	 per	 node)	

M
ill
io
n	
Re

qu
es
ts
/s
ec
.	

•  STINGER: a state-of-the-art shared-memory dynamic graph
processing framework developing at Georgia Tech

•  Baseline: a baseline model using Boost.Interprocess
•  DegAwareRHH: our proposed dynamic graph store

Dynamic	 Large-‐Scale	 Graph	 Construc'on	 (on-‐memory)	

Edge	 inser'on	 and	 dele'on	
(single	 node,	 24	 threads/processes)	

total	 #edges:	 1	 billion	

Edge	 inser'on	
total	 #edges:	 128	 billion	

Be
z
er

	

Bi
lli
on

	 R
eq

ue
st
s/
se
c.

	

16x than
Baseline

121x than
STINGER

over 2 billion
insertions/

sec.
overperform
s Baseline
by 30.69 %

Due	 to	 a	 skewness	 of	 the	 data	 set	 (RMAT	
graph),	 DegAwareRHH	 overperforms	 the	 both	
implementa'ons	 significantly	 	

2016/2/3

Publica'on	 list	
•  Keita	 Iwabuchi,	 Roger	 A.	 Pearce,	 Brian	 Van	 Essen,	 Maya	 Gokhale,	 Satoshi	 Matsuoka,	

“Design	 of	 a	 NVRAM	 Specialized	 Degree	 Aware	 Dynamic	 Graph	 Data	 Structure”,	 SC	
2015	 Regular,	 Electronic,	 and	 Educa'onal	 Poster,	 Interna'onal	 Conference	 for	 High	
Performance	 Compu'ng,	 Networking,	 Storage	 and	 Analysis	 2015	 (SC	 ’15),	 Nov.	 2015	

•  Keita	 Iwabuchi,	 Roger	 A.	 Pearce,	 Brian	 Van	 Essen,	 Maya	 Gokhale,	 Satoshi	 Matsuoka,	
“Design	 of	 a	 NVRAM	 Specialized	 Degree	 Aware	 Dynamic	 Graph	 Data	 Structure”,	 7th	
Annual	 Non-‐Vola'le	 Memories	 Workshop	 2016,	 Mar.	 2016	

An	 OpenACC	 Extension	 for	 Data	 Layout	
Transforma'on	 w/ORNL	

	
	 	

Tetsuya	 Hoshino(Ph.D	 Student)	
Research	 Internship	 @ORNL	 2014	 Sep-‐Nov	

	
Now:	 Assistant	 Professor	 @	 Supercompu'ng	 Center,	

The	 University	 of	 Tokyo	
	

	

Why	 the	 extension	 is	 needed?	
•  An	 OpenACC	 program	 can	 be	

executed	 on	 any	 devices	
–  mul'-‐core	 CPU,	 Xeon	 Phi,	 GPUs	

•  OpenACC	 target	 devices	 have	
different	 performance	
characteris'cs	 especially	 about	
memory	 access	
–  	 ex.	 SoA	 and	 AoS	

•  Data	 layout	 of	 real-‐world	
applica'ons	 is	 complicated	 and	
is	 shared	 in	 the	 whole	 program	
–  Auto-‐tuning	 is	 required	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

Original	 AoS	 SoA	

El
ap

se
d	
:m

e/
1	
:m

e	
st
ep

	 [s
ec
]	

Viscosity	 and	 Convec:on	 phases	

Intel	 Xeon	
(6	 core)	

K20X	 GPU	

The	 graph	 shows	 the	 result	 of	 manual	 data	 layout	
transforma'on	 for	 the	 viscosity	 and	 convec'on	
phases	 of	 a	 real-‐world	 CFD	 applica'on	 UPACS	 	 	
(Hoshino	 et	 al.	 “CUDA	 vs	 OpenACC:	 Performance	 Case	 Studies	 with	
Kernel	 Benchmarks	 and	 a	 Memory-‐Bound	 CFD	 Applica'on”,	 CCGrid13)	
 	

An	 OpenACC	 extension	
#pragma	 acc	 transform	

•  Specifica'on	

	
•  Clause	 list	

–  transpose(array_name::transpose_rule)	
•  for	 mul'-‐dimensional	 array	 	
•  A[Z][Y][X][3]	 →	 A’[3][Z][Y][X]	 	 (transpose	 rule	 ::	 [4,1,2,3])	

–  redim(array_name::redim_rule)	
•  for	 1	 dimensional	 array	 	
•  B[Z*Y*X*3]	 →	 B’[Z][Y][X][3]	 →	 B’’[3][Z][Y][X]	 (by	 transpose	 clause)	

–  expand(derived_type_array_name)	
•  for	 array	 of	 structures	
•  C[Z][Y][X].c[3]	 →	 C’[Z][Y][X][3]	 →	 C’’[3][Z][Y][X]	 (by	 transpose	 clause)	

37	

#pragma	 acc	 transform	 [clause	 [[,]	 clause]	 …]	 new-‐line	
	 	 	 	 	 	 	 	 	 structured	 block	

Collaborate	 with	 ORNL	
•  Implement	 the	 direc've	 top	 on	 OpenARC	 that	 is	 an	 Open-‐source	

OpenACC	 compiler	 developed	 by	 ORNL	 	
–  Source-‐to-‐Source	 translator	

•  Input	 :	 Extended	 OpenACC	 program	 	
•  Output	 :	 OpenACC	 program	

–  It	 is	 on	 going	 work	

Our	 Translator	
	
	
	
	
	
	
	

Extended	
OpenACC	

.c	 input	
OpenARC	
generates	

AST	

analyze	
direc'ves	

transform	
structures	 output	

OpenACC	

.c	

Evaluate	 with	 Himeno	 benchmark	 	
(27-‐point	 stencil	 program)	

•  Apply	 transpose	 to	
coefficient	 arrays	 of	
Himeno	 benchmark	
–  But	 the	 transforma'on	 is	

applied	 by	 hands	
–  Transformed	 program	 is	

same	 as	 the	 output	 program	
that	 OpenARC	 should	 output	

•  Performance	 evalua'on	
–  CPU	 :	 Original	 is	 the	 best	
–  GPU	 :	 24%	 up	
–  MIC	 :	 more	 than	 60%	 down	

•  Translator	 change	 the	
coefficient	 mul'dimensional	
array	 to	 1-‐dimensional	 array,	
it	 disturbs	 prefetching	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

Original	 A[Z][Y][X][4]	
([4]	 is	

innermost)	

A[Z][Y][4][X]	 A[Z][4][Y][X]	 A[4][Z][Y][X]	
([4]	 is	

outermost)	

Re
la
:v

e	
pe

rf
or
m
an

ce
	 (O

rig
in
al
	 =
=	
1)

	

Intel	 Xeon	 (12cores)	

Intel	 Xeon	 Phi	

NVIDIA	 K20X	 GPU	

Lessons Learned	

•  Sending	 actual	 Ph.D.	 students	 to	 DoE	 labs	 extremely	
produc've	 for	 both	 sides	 for	 tangible	 collabra'on	

•  Tokyo	 Tech	 Ph.D.	 students	 are	 extremely	 good	 and	 well	
trained	 by	 global	 standards	 –	 they	 usually	 survive	 the	
filtering	 of	 summer	 interns	 and	 produce	 tangible	 results	

• Many	 students	 end	 up	 being	 hired	 by	 DoE	 labs.	 Others	
go	 to	 Japanese	 univ.	 &	 labs,	 etc.	 =>	 great	 talent	 pool	

•  Some	 administra've	 obstacles,	 esp.	 travel	 and	 funding	
from	 both	 ends	 –	 need	 more	 flexibility	 in	 purpose,	
airlines,	 gaps	 in	 travel	 i'nerary,	 etc.	

4
1	

Tokyo	 Tech	 Research	 on	 Big	 Data	 Convergence	
JST-‐CREST	 “Extreme	 Big	 Data”	 Project	 (2013-‐2018)	

Supercomputers
Compute&Batch-Oriented

More fragile

Cloud　IDC
Very low BW & Efficiency
Highly available, resilient

	

Convergent Architecture (Phases 1~4)
Large Capacity NVM, High-Bisection NW

PCB	

TSV Interposer	

High Powered
Main CPU	

Low
Power
CPU	

DRAM	
DRAM	
DRAM	

NVM/
Flash	

NVM/
Flash	

NVM/
Flash	

Low
Power
CPU	

DRAM	
DRAM	
DRAM	

NVM/
Flash	

NVM/
Flash	

NVM/
Flash	

2Tbps HBM
4~6HBM Channels
1.5TB/s DRAM &
NVM BW

30PB/s I/O BW Possible
1 Yottabyte / Year

EBD System Software
incl. EBD Object System	

In
tr
o
d
u
ct
io
n

P
ro
b
le
m

D
om

ai
n

In
m
os
t
liv
in
g
or
ga
ni
sm

s
ge
ne
ti
c
in
st
ru
ct
io
ns

us
ed

in
th
ei
r
de
ve
lo
pm

en
t
ar
e
st
or
ed

in
th
e
lo
ng

p
ol
ym

er
ic

m
ol
ec
ul
e
ca
lle
d
D
N
A
.

D
N
A
co
ns
is
ts

of
tw
o
lo
ng

p
ol
ym

er
s
of

si
m
pl
e
un

it
s

ca
lle
d
nu

cl
eo
ti
de
s.

T
he

fo
ur

ba
se
s
fo
un

d
in

D
N
A
ar
e
ad
en
in
e
(a
bb
re
vi
at
ed

A
),
cy
to
si
ne

(C
),
gu
an
in
e
(G

)
an
d
th
ym

in
e
(T

).

A
le
k
sa
n
d
r
D
ro
zd

,
N
a
oy
a
M
ar
u
ya
m
a
,
S
a
to
sh
i
M
a
ts
u
o
ka

(T
IT

E
C
H
)

A
M
u
lt
i
G
P
U

R
ea

d
A
lig

n
m
en

t
A
lg
or
it
h
m

w
it
h
M
o
d
el
-b
a
se
d
P
er
fo
rm

a
n
ce

O
p
ti
m
iz
a
ti
o
n

N
o
ve

m
b
er

1
,
2
0
1
1

5
/
5
4

Large Scale
Metagenomics	

Massive Sensors and
Data Assimilation in
Weather Prediction	

Ultra Large Scale
Graphs and Social
Infrastructures	

Exascale Big Data HPC 	

Co-Design	

Future Extreme Big Data Scientific Apps	

Graph	 Store	

EBD	 Bag	
Co-Design	 13/06/06 22:36日本地図

1/1 ページfile:///Users/shirahata/Pictures/日本地図.svg

1000km

K
V
S	

K
V
S	

K
V
S	

EBD	 KVS	

Cartesian	 Plane	
Co-Design	

Given	 a	 top-‐class	
supercomputer,	
how	 fast	 can	 we	
accelerate	 next	
genera>on	 big	
data	 c.f.	 Clouds?	

World-‐leading	
results:	
-‐  #1	 Graph	 500	

2014,	 2015	
-‐  #1	 Green	 Graph	

500	
(TsubameKFC)	

-‐  GPU	 sort	 scalable	
to	 ~30Petabyte/s	
on	 future	 SCs	

-‐  OSSs	 in	 dev.	

The	 Graph500	 –	 June	 2014	 and	 June/Nov	 2015	 	
	 K	 Computer	 #1	 Tokyo	 Tech[EBD	 CREST]	 Univ.	 Kyushu	

[Fujisawa	 Graph	 CREST],	 Riken	 AICS,	 Fujitsu

List Rank GTEPS Implementation

November 2013 4 5524.12 Top-down only

June 2014 1 17977.05 Efficient hybrid

November 2014 2 Efficient hybrid

June/Nov 2015 1 38621.4 Hybrid + Node
Compression

*Problem size is
weak scaling

“Brain-class” graph

88,000 nodes, 700,000
CPU Cores
1.6 Petabyte mem
20GB/s Tofu NW

≫

LLNL-IBM Sequoia
1.6 million CPUs
1.6 Petabyte mem

0

500

1000

1500

64 nodes
(Scale 30)

65536
nodes

(Scale 40)

El
ap

se
d

Ti
m

e
(m

s)

Communic
73% total exec

time wait in
communication

4
3	

TSUBAME3.0	

2006 TSUBAME1.0
80 Teraflops, #1 Asia #7 World
“Everybody’s Supercomputer”	

2010 TSUBAME2.0
2.4 Petaflops #4 World

“Greenest Production SC”	

2013
TSUBAME2.5

upgrade
5.7PF DFP /
17.1PF SFP
20% power
reduction	

2013 TSUBAME-KFC
#1 Green 500	

2017 TSUBAME3.0
15~20PF(DFP) ~4PB/s Mem BW
9~10GFlops/W power efficiency
Big Data & Cloud Convergence

Large Scale Simulation
Big Data Analytics

Industrial Apps	2011	 ACM	 Gordon	 Bell	 Prize	

2017	 Q1	 TSUBAME3.0+2.5	 Towards	 Exa	 &	 Big	 Data	
	

1.   “Everybody’s	 Supercomputer”	 –	 High	 Performance	 (15~20	 Petaflops,	 ~4PB/s	 Mem,	 ~1Pbit/s	
NW),	 innova:ve	 high	 cost/performance	 packaging	 &	 design,	 in	 mere	 100m2…	

2.   “Extreme	 Green”	 –	 9~10GFlops/W	 power-‐efficient	 architecture,	 system-‐wide	 power	 control,	
advanced	 cooling,	 future	 energy	 reservoir	 load	 leveling	 &	 energy	 recovery	

3.   “Big	 Data	 Convergence”	 –	 Extreme	 high	 BW	 &capacity,	 deep	 memory	
	 hierarchy,	 extreme	 I/O	 accelera:on,	 Big	 Data	 SW	 Stack	 	
for	 machine	 learning	 /DNN,	 graph	 processing,	 …	

4.   “Cloud	 SC”	 –	 dynamic	 deployment,	 container-‐based	 	
node	 co-‐loca:on	 &	 dynamic	 configura:on,	 resource	
elas:city,	 assimila:on	 of	 public	 clouds…	

5.   “Transparency”	 -‐	 full	 monitoring	 &	 	
user	 visibility	 of	 machine	
&	 job	 state,	 	
accountability	 	
via	 reproducibility	

43	

Big Data and HPC Convergent Infrastructure 
=> “Big Data & Supercomputing Convergent Center” （Tokyo Tech GSIC）	

•  “Big Data” currently processed managed by domain laboratories => No longer scalable
•  HPCI HPC Center => Converged HPC and Big Data Science Center
•  People convergence: domain scientists + data scientists + CS/Infrastructure => Big data science center
•  Data services including large data handling, big data structures e.g. graphs, ML/DNN/AI services…	

2013 TSUBAME2.5
Upgrade

5.7Petaflops 17PF DNN	

2017Q1 TSUBAME3.0+2.5 upgrade
Green&Big Data 100+PF DNN

HPCI Leading Machine
Ultra-fast memory

network, I/O
	

Mid-tier
Parallel FS

Storage

Archival
Long-Term

Object Store

Big	 Data	 Science	
Applica'ons	

In
tr
o
d
u
ct
io
n

P
ro
b
le
m

D
om

ai
n

In
m
os
t
liv
in
g
or
ga
ni
sm

s
ge
ne
ti
c
in
st
ru
ct
io
ns

us
ed

in
th
ei
r
de
ve
lo
pm

en
t
ar
e
st
or
ed

in
th
e
lo
ng

p
ol
ym

er
ic

m
ol
ec
ul
e
ca
lle
d
D
N
A
.

D
N
A
co
ns
is
ts

of
tw
o
lo
ng

p
ol
ym

er
s
of

si
m
pl
e
un

it
s

ca
lle
d
nu

cl
eo
ti
de
s.

T
he

fo
ur

ba
se
s
fo
un

d
in

D
N
A
ar
e
ad
en
in
e
(a
bb
re
vi
at
ed

A
),
cy
to
si
ne

(C
),
gu
an
in
e
(G

)
an
d
th
ym

in
e
(T

).

A
le
k
sa
n
d
r
D
ro
zd

,
N
a
oy
a
M
ar
u
ya
m
a
,
S
a
to
sh
i
M
a
ts
u
o
ka

(T
IT

E
C
H
)

A
M
u
lt
i
G
P
U

R
ea

d
A
lig

n
m
en

t
A
lg
or
it
h
m

w
it
h
M
o
d
el
-b
a
se
d
P
er
fo
rm

a
n
ce

O
p
ti
m
iz
a
ti
o
n

N
o
ve

m
b
er

1
,
2
0
1
1

5
/
5
4

Na:onal	 Labs	 	
With	 Data	

Present	 old	 style	 data	 science	
Domain	 labs	 segregated	 data	 facili'es	

No	 mutual	 collabora'ons	
Inefficient,	 not	 scalable	 with	
Not	 enough	 data	 scien'sts	

Convergence	 of	
top-‐>er	 HPC	
and	 Big	 Data	
Infrastructure	

Data	
Management	
Big	 Data	 Storage	
Deep	 Learning	
SW	 Infrastructure	
	

Virtual	 Mul>-‐Ins>tu>onal	 Data	 Science	 =>	 People	 Convergence	

Goal 100 Petabytes

100Gbps	 L2	
Connec'on	 to	
commercial	 clouds	

Main	 reason:	 We	
have	 shared	
resource	 HPC	
centers	 but	 no	

“Data	 Center”	 per	 se	

New collabora8ons under considera8on	
•  Fault	 tolerance	 towards	 exascale	

•  Modeling	 &	 analyzing	 sor	 errors	 with	 “realis'c”	 	
machine	 fault	 models	 (Kobayashi)	

•  General	 system-‐level	 GPU	 checkpoin'ng	 (Suzuki)	

• Big	 Data	 /	 IoT	 /	 Machine	 Learning-‐AI	 &	 HPC	 Convergence	
•  Modeling	 deep	 learning	 algorithms	 performance	 (Ooyama)	
•  Counterpart	 to	 Tokyo	 Tech	 Extreme	 Big	 Data	 (EBD)	 Project	 w/DENSO	

• Post-‐Moore	 compu'ng	
•  Programming	 /	 Performance	 modeling	 future	 FPGAs	 (also	 w/Riken	
AICS	 Naoya	 Maruyama	 (Hamid)	

•  FLOPS	 to	 BYTES	 –	 from	 compute	 intensive	 to	 bandwidth/capacity	
intensive	 compu'ng	 (w/Kengo	 Nakajima,	 Toshio	 Endo	 et.	 al.)	

• ADAC	 (Accelerated	 Data	 Analy'cs	 and	 Compu'ng)	 Ins'tute	 –	
ORNL	 –	 ETH/CSCS	 –	 Tokyo	 Tech	 GSIC	

To	 be	
presented	 @	
DoE/MEXT	
workshop)	

