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Successful  Model  of  DoE  Lab  /  Tokyo  
Tech  Collabora8on	
•  1.	  Ini'al	  agreement	  on	  collabora'on	  area	  w/DoE	  group	  

•  Funding	  on	  both	  sides	  not	  mandated	  but	  desirable	  

•  2.	  Send	  a	  Ph.D.	  guinea	  pig	  student	  for	  short-‐term	  (2mo)	  
exploratory	  hard	  labor	  internship	  

•  3.	  Usually	  Tokyo	  Tech	  student	  performs	  extremely	  well	  =>	  
tangible	  collabora've	  research	  advance	  

•  4.	  Student	  asked	  back	  for	  longer-‐term	  (6	  mo	  or	  greater)	  
more	  hard	  labor	  internship	  

•  5.	  Papers	  published,	  OSS	  deliverables,	  awards,	  …	  
•  6.	  Student	  obtains	  Ph.D.	  =>	  hired	  as	  postdoc	  at	  DoE	  Lab	  
(much	  higher	  salary	  than	  being	  hired	  in	  Japan!)	  



Tokyo  Tech  Collabora8on  Topics  with  
DoE  Labs  in  the  recent  years	
•  Exascale	  Resiliece	  (Leonardo	  Bau'sta-‐Gomez@ANL,	  
Kento	  Sato@LLNL)	  

• Performance	  of	  OpenMP-‐MPI	  Hybrid	  Programming	  on	  
Many-‐Core	  (Abdelhalim	  Amer@ANL)	  

• Performance	  Visualiza'on	  (Kevin	  Brown@LLNL)	  
• Performance	  Modeling	  of	  Tee	  Code	  with	  ASPEN	  
(Keisuke	  Fukuda@ORNL)	  

•  Large-‐Scale	  Graph	  Store	  in	  NVM	  	  (Keita	  Iwabuchi@LLNL)	  
• OpenACC	  Data	  Layout	  Extensions	  (Tetsuya	  
Hoshino@ORNL)	  

• More	  to	  come…	  
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[SC11,  EuroPar12  &  Cluster12  (Leonardo  Bautista-‐‑Gomez  et  al.)]	
Internship  at  ANL  =>  PostDoc  at  ANL	
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•  Diskless	  checkpoint:	  
–  Create	  redundant	  data	  across	  local	  

storages	  on	  compute	  nodes	  using	  a	  
encoding	  technique	  such	  as	  Reed-‐
solomon,	  XOR	  

•  Scalable	  by	  using	  distributed	  disks	  
–  Can	  restore	  lost	  checkpoints	  on	  a	  failure	  

caused	  by	  small	  #	  of	  nodes	  like	  RAID-‐5	  

Diskless	  checkpoin'ng	  
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Diskless	  checkpoint	  run'me	  library	  using	  Reed-‐Solomon	  encoding	  	  

Ø 	  FTI	  implements	  a	  scalable	  Reed-‐
Solomon	  encoding	  algorithm	  by	  
u'lizing	  local	  storages	  such	  as	  SSD	  
	  
Ø 	  FTI	  analyzes	  the	  topology	  of	  the	  
system	  and	  create	  encoding	  
clusters	  that	  increase	  the	  
resilience	  
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FTI (Multilevel checkpointing) 

λ FTI is a multilevel checkpointing library with 4 levels of reliability. It has over 8000 
lines of c/c++ (with Fortran bindings) under GPL2.1. 
λ Download at http://www.github.com/leobago/fti   and you can access the 
documentation at http://leobago.github.io/fti 
λ FTI discovers the location of the processes in the hardware and creates topology-
aware virtual rings to enhance reliability. 
λ FTI can protect dynamic datasets, where the size, pointers or structure of the dataset 
changes during the runtime. 
λ FTI offers the option to dedicate one process per node for fault tolerance to minimize 
the checkpoint overhead. 
λ While using dedicated processes for asynchronous tasks FTI allows the user to do a 
fine-grained selection about the tasks to offload. 
λ While using dedicated processes, FTI splits the global communicator and returns a 
new communicator to isolate the FT-dedicate ranks. 
λ FTI monitors the timestep length and can dynamically adapt the checkpointing 
interval during runtime, keeping a consistent state.  
λ Applications ported: HACC, CESM (ice module), LAMMPS, GYSELA5D, 
SPECFEM3D (CUDA version), HYDRO. 



API and code example 

 
 

 
int main(int argc, char **argv) { 
 
   MPI_Init(&argc, &argv); 
   FTI_Init(“conf.fti”, MPI_COMM_WORLD); 
 
   double *grid; 
   int i, steps=500, size=10000; 
   initialize(grid); 
   FTI_Protect(0, &i,   1,   FTI_INTG);   
   FTI_Protect(1, grid, size,FTI_DFLT);   
  
   for (i=0; i<steps; i++) { 
      FTI_Snapshot(); 
      kernel1(grid); 
      kernel2(grid); 
      comms(FTI_COMM_WORLD); 
   } 
 
   FTI_Finalize(); 
   MPI_Finalize(); 
   return 0; 
} 

File System: Classic Ckpt. 
Slowest of all levels. 

The most reliable. Power outage. 

RS Encoding: Ckpt. Encoding. 
Slow for large checkppoints. 

Reliable, multiple node crashes. 

Partner Copy: Ckpt. Replication. 
Fast copy to neighbor node. 

It tolerates single node crashes. 

Local Storage: SSD, PCM, NVM. 
Fastest checkpoint level. 

Low reliability, transient failures. 
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λ Weak scaling on MIRA (BG\Q) 
λ LAMMPS, Lennard-Jones 
simulation of 1.3 billion atoms 
λ 512 nodes, 64 MPI processes per 
node ( 32,678 processes) 
λ Power monitoring and checkpoint 
every ~5 minutes 
λ Less than 5% overhead on time to 
completion 

λ Weak scaling to ~10k proc. 
λ CURIE supercomputer in France 
λ SSD on the compute nodes  
λ HYDRO scientific application 
λ Checkpointing every ~6 minutes 

FTI scaling 



Extreme-Scale Resilience for Billion-Way Parallelism	

•  Coordinators 
–  US: Kento Sato, Kathryn Mohror, Adam Moody, 

Todd Gamblin, Bronis R. de Sipinski (LLNL) 
–  JP: Satoshi Matsuok (Tokyo Tech), Naoya 

Maruyama (RIKEN) 
•  Description 

–  The Tokyo Tech group creates resilience APIs 
for transparent and fast recovery, resilience 
modeling for optimizing environment, and 
resilience architecture for scalable and reliable 
checkpoint/restart, then feeds back to SCR, the 
production resilience library developed at LLNL. 
The production library will be deployed in 
TSUBAME3.0 

•  How to collaborate 
–  Biweekly meeting 
–  Student / young researchers exchange 

•  Deliverables 
–  Pre-standardization of Resilience API	
–  Production resilience interface, SCR 
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•  Schedule (DRAFT) 
2015	 2016	 2017	 2018	 2019	 2020	
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Resilience Architecture: 
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Burst buffers 

LLNL-PRES-665006 

Kento Sato 
LLNL Internship 
Now LLNL PostDoc	
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int main (int *argc, char *argv[]) { 
  FMI_Init(&argc, &argv); 
  FMI_Comm_rank(FMI_COMM_WORLD, &rank); 
  /* Application’s initialization */ 
  while ((               ) < numloop) { 
    /* Application’s program */ 
  } 
  /* Application’s finalization */ 
  FMI_Finalize(); 
} 

FMI	  example	  code	  

n = FMI_Loop(…)  

•  FMI_Loop	  enables	  transparent	  recovery	  and	  roll-‐
back	  on	  a	  failure	  

–  Periodically	  write	  a	  checkpoint	  
–  Restore	  the	  last	  checkpoint	  on	  a	  failure	  

[IPDPS2014,  Kento  Sato  et  al.]	
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Figure 4.13: Checkpoint/Restart scalability with 6 GB/node checkpoints, 12 process-
es/node

the performance of FMI with an MPI implementation. For those experiments, we used

MVAPICH2 version 1.2 running on top of SLURM [76].

4.6.1 FMI Performance

Table 4.2: Ping-Poing Performance of MPI and FMI

1-byte Latency Bandwidth (8MB)
MPI 3.555 usec 3.227 GB/s
FMI 3.573 usec 3.211 GB/s

We measured the point-to-point communication performance on Sierra, and compare

FMI to MVAPICH2. Table 4.2 shows the ping-pong communication latency for 1-byte

messages, and bandwidth for a message size of 8 MB. Because FMI can intercept MPI

calls, we compiled the same ping-pong source for both MPI and FMI. The results show

that FMI has very similar performance compared to MPI for both the latency and the

bandwidth. The overhead for providing fault tolerance in FMI is negligibly small for

messaging.

Because failure rates are expected to increase at extreme scale, checkpoint/restart for

failure recovery must be fast and scalable. To evaluate the scalability of checkpoint/restart

in FMI, we ran a benchmark which writes checkpoints (6 GB/node), and then recovers

P2P communication performance 

Even with the high failure rate,  
FMI incurs only a 28% overhead 

MTBF: 1 minute 

 FMI directly writes checkpoints 
via memcpy, and can exploit the 

bandwidth 

API 

Architecture 

Modeling 

Analysis 

Example code & Evaluation 
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90%  of  efficiency  in  most  cases	

[SC12,  Kento  Sato  et  al.]	

API 

Architecture 

Modeling 

Analysis 

•  Objective: Minimize checkpoint overhead to PFS
o  Minimize CPU usage, memory and network bandwidth

•  Proposed method: Implementation and modeling 
Non-blocking checkpointing
o  Asynchronously write checkpoints to PFS through Staging nodes using 

RDMA
o  Determine the optimal checkpoint interval on the asynchronous 

checkpoint scheme

8% 

Failure analysis on TSUBAME2.0 

8-‐12%	  of	  failures	  s'll	  	  
requires	  PFS	  checkpoint	  

x Computation state followed by 
level-x checkpoint 

x Recovery state from level-x 
checkpoint 

Transition to a recovery state 
by level-2 failure 

Transition to a computation 
state by  level-2 recovery 
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Fig. 2 (a) Left: Flat buffer system (b) Right: Burst buffer system

ging overhead. In addition, if we apply uncoordinated check-
pointing to MPI applications, indirect global synchronization can
occur. For example, process(a2) in cluster(A) wants to send a
message to process(b1) in cluster(B), which is writing its check-
point at that time. Process(a2) waits for process(b1) because pro-
cess(b1) is doing I/O and can not receive or reply to any mes-
sages, which keeps process (a1) waiting to checkpoint with pro-
cess (a2) in Figure 1. If such a dependency propagates across all
processes, it results in indirect global synchronization. Many MPI
applications exchange messages between processes in a shorter
period of time than is required for checkpoints, so we assume
uncoordinated checkpointing time is same as coordinated check-
pointing one in the model in Section 4.

2.4 Target Checkpoint/Restart Strategies
As discussed previously, multilevel and asynchronous ap-

proaches are more efficient than single and synchronous check-
point/restart respectively. However, there is a trade-off between
coordinated and uncoordinated checkpointing given an applica-
tion and the configuration. In this work, we compare the ef-
ficiency of multilevel asynchronous coordinated and uncoordi-
nated checkpoint/restart. However, because we have already
found that these approaches may be limited in increasing applica-
tion efficiencies at extreme scale [29], we also consider storage
architecture approaches.

3. Storage designs
Our goal is to achieve a more reliable system with more effi-

cient application executions. Thus, we consider not only a soft-
ware approach via checkpoint/restart techniques, but also con-
sider different storage architectures. In this section, we introduce
an mSATA-based SSD burst buffer system (Burst buffer system),
and explore the advantages by comparing to a representative cur-
rent storage system (Flat buffer system).

3.1 Current Flat Buffer System
In a flat buffer system (Figure 2 (a)), each compute node has

its dedicated node-local storage, such as an SSD, so this design
is scalable with increasing number of compute nodes. Several
supercomputers employ this flat buffer system [13], [22], [24].
However this design has drawbacks: unreliable checkpoint stor-
age and inefficient utilization of storage resources. Storing check-
points in node-local storage is not reliable because an applica-
tion can not restart its execution if a checkpoint is lost due to a
failed compute node. For example, if compute node 1 in Figure
2 (a) fails, a checkpoint on SSD 1 will be lost because SSD 1
is connected to the failed compute node 1. Storage devices can
be underutilized with uncoordinated checkpointing and message

logging. While the system can limit the number of processes to
restart, i.e., perform a partial restart, in a flat buffer system, lo-
cal storage is not utilized by processes which are not involved in
the partial restart. For example, if compute node 1 and 3 are in a
same cluster, and restart from a failure, the bandwidth of SSD 2
and 4 will not be utilized. Compute node 1 can write its check-
points on the SSD of compute node 2 as well as its own SSD in
order to utilize both of the SSDs on restart, but as argued earlier
distributing checkpoints across multiple compute nodes is not a
reliable solution.

Thus, future storage architectures require not only efficient but
reliable storage designs for resilient extreme scale computing.

3.2 Burst Buffer System
To solve the problems in a flat buffer system, we consider a

burst buffer system [21]. A burst buffer is a storage space to
bridge the gap in latency and bandwidth between node-local stor-
age and the PFS, and is shared by a subset of compute nodes.
Although additional nodes are required, a burst buffer can offer
a system many advantages including higher reliability and effi-
ciency over a flat buffer system. A burst buffer system is more
reliable for checkpointing because burst buffers are located on
a smaller number of dedicated I/O nodes, so the probability of
lost checkpoints is decreased. In addition, even if a large number
of compute nodes fail concurrently, an application can still ac-
cess the checkpoints from the burst buffer. A burst buffer system
provides more efficient utilization of storage resources for partial
restart of uncoordinated checkpointing because processes involv-
ing restart can exploit higher storage bandwidth. For example, if
compute node 1 and 3 are in the same cluster, and both restart
from a failure, the processes can utilize all SSD bandwidth unlike
a flat buffer system. This capability accelerates the partial restart
of uncoordinated checkpoint/restart.

Table 1 Node specification
CPU Intel Core i7-3770K CPU (3.50GHz x 4 cores)

Memory Cetus DDR3-1600 (16GB)
M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 msata 256GB CT256M4SSD3

(Peak read: 500MB/s, Peak write: 260MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Fram
RAID Card Adaptec RAID 7805Q ASR-7805Q Single

To explore the bandwidth we can achieve with only commod-
ity devices, we developed an mSATA-based SSD test system. The
detailed specification is shown in Table 1. The theoretical peak
of sequential read and write throughput of the mSATA-based SSD
is 500 MB/sec and 260 MB/sec, respectively. We aggregate the
eight SSDs into a RAID card, and connect two the RAID cards
via PCE-express(x8) 3.0. The theoretical peak performance of
this configuration is 8 GB/sec for read and 4.16 GB/sec for write
in total. Our preliminary results showed that actual read band-
width is 7.7 GB/sec (96% of peak) and write bandwidth is 3.8
GB/sec (91% of peak) [32] . By adding two more RAID cards,
and connecting via high-speed interconnects, we expect to be able
to build a burst buffer machine using only commodity devices
with 16 GB/sec of read, and 8.32 GB/sec of write throughput.

c⃝ 2013 Information Processing Society of Japan 3
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Fig. 2 (a) Left: Flat buffer system (b) Right: Burst buffer system

ging overhead. In addition, if we apply uncoordinated check-
pointing to MPI applications, indirect global synchronization can
occur. For example, process(a2) in cluster(A) wants to send a
message to process(b1) in cluster(B), which is writing its check-
point at that time. Process(a2) waits for process(b1) because pro-
cess(b1) is doing I/O and can not receive or reply to any mes-
sages, which keeps process (a1) waiting to checkpoint with pro-
cess (a2) in Figure 1. If such a dependency propagates across all
processes, it results in indirect global synchronization. Many MPI
applications exchange messages between processes in a shorter
period of time than is required for checkpoints, so we assume
uncoordinated checkpointing time is same as coordinated check-
pointing one in the model in Section 4.

2.4 Target Checkpoint/Restart Strategies
As discussed previously, multilevel and asynchronous ap-

proaches are more efficient than single and synchronous check-
point/restart respectively. However, there is a trade-off between
coordinated and uncoordinated checkpointing given an applica-
tion and the configuration. In this work, we compare the ef-
ficiency of multilevel asynchronous coordinated and uncoordi-
nated checkpoint/restart. However, because we have already
found that these approaches may be limited in increasing applica-
tion efficiencies at extreme scale [29], we also consider storage
architecture approaches.

3. Storage designs
Our goal is to achieve a more reliable system with more effi-

cient application executions. Thus, we consider not only a soft-
ware approach via checkpoint/restart techniques, but also con-
sider different storage architectures. In this section, we introduce
an mSATA-based SSD burst buffer system (Burst buffer system),
and explore the advantages by comparing to a representative cur-
rent storage system (Flat buffer system).

3.1 Current Flat Buffer System
In a flat buffer system (Figure 2 (a)), each compute node has

its dedicated node-local storage, such as an SSD, so this design
is scalable with increasing number of compute nodes. Several
supercomputers employ this flat buffer system [13], [22], [24].
However this design has drawbacks: unreliable checkpoint stor-
age and inefficient utilization of storage resources. Storing check-
points in node-local storage is not reliable because an applica-
tion can not restart its execution if a checkpoint is lost due to a
failed compute node. For example, if compute node 1 in Figure
2 (a) fails, a checkpoint on SSD 1 will be lost because SSD 1
is connected to the failed compute node 1. Storage devices can
be underutilized with uncoordinated checkpointing and message

logging. While the system can limit the number of processes to
restart, i.e., perform a partial restart, in a flat buffer system, lo-
cal storage is not utilized by processes which are not involved in
the partial restart. For example, if compute node 1 and 3 are in a
same cluster, and restart from a failure, the bandwidth of SSD 2
and 4 will not be utilized. Compute node 1 can write its check-
points on the SSD of compute node 2 as well as its own SSD in
order to utilize both of the SSDs on restart, but as argued earlier
distributing checkpoints across multiple compute nodes is not a
reliable solution.

Thus, future storage architectures require not only efficient but
reliable storage designs for resilient extreme scale computing.

3.2 Burst Buffer System
To solve the problems in a flat buffer system, we consider a

burst buffer system [21]. A burst buffer is a storage space to
bridge the gap in latency and bandwidth between node-local stor-
age and the PFS, and is shared by a subset of compute nodes.
Although additional nodes are required, a burst buffer can offer
a system many advantages including higher reliability and effi-
ciency over a flat buffer system. A burst buffer system is more
reliable for checkpointing because burst buffers are located on
a smaller number of dedicated I/O nodes, so the probability of
lost checkpoints is decreased. In addition, even if a large number
of compute nodes fail concurrently, an application can still ac-
cess the checkpoints from the burst buffer. A burst buffer system
provides more efficient utilization of storage resources for partial
restart of uncoordinated checkpointing because processes involv-
ing restart can exploit higher storage bandwidth. For example, if
compute node 1 and 3 are in the same cluster, and both restart
from a failure, the processes can utilize all SSD bandwidth unlike
a flat buffer system. This capability accelerates the partial restart
of uncoordinated checkpoint/restart.

Table 1 Node specification
CPU Intel Core i7-3770K CPU (3.50GHz x 4 cores)

Memory Cetus DDR3-1600 (16GB)
M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 msata 256GB CT256M4SSD3

(Peak read: 500MB/s, Peak write: 260MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Fram
RAID Card Adaptec RAID 7805Q ASR-7805Q Single

To explore the bandwidth we can achieve with only commod-
ity devices, we developed an mSATA-based SSD test system. The
detailed specification is shown in Table 1. The theoretical peak
of sequential read and write throughput of the mSATA-based SSD
is 500 MB/sec and 260 MB/sec, respectively. We aggregate the
eight SSDs into a RAID card, and connect two the RAID cards
via PCE-express(x8) 3.0. The theoretical peak performance of
this configuration is 8 GB/sec for read and 4.16 GB/sec for write
in total. Our preliminary results showed that actual read band-
width is 7.7 GB/sec (96% of peak) and write bandwidth is 3.8
GB/sec (91% of peak) [32] . By adding two more RAID cards,
and connecting via high-speed interconnects, we expect to be able
to build a burst buffer machine using only commodity devices
with 16 GB/sec of read, and 8.32 GB/sec of write throughput.

c⃝ 2013 Information Processing Society of Japan 3
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EBD I/O 

•  Provide	  POSIX-‐like	  I/O	  interfaces	  
–  open,	  read,	  write	  and	  close	  
–  Client	  can	  open	  any	  files	  on	  any	  servers	  

•  IBIO	  use	  ibverbs	  for	  communica'on	  between	  
clients	  and	  servers	  

–  Exploit	  network	  bandwidth	  of	  infiniBand	  	  
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To	  find	  out	  the	  best	  checkpoint/restart	  strategy	  for	  systems	  with	  burst	  buffers,	  we	  model	  checkpoin'ng	  strategies	  
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Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
λi

λ
(1 − e−λT )

ti(T ) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT )
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure
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constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
λi

λ
(1 − e−λT )

ti(T ) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT )
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure
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Table 3 Simulation configuration

level 1 level 2
ri 16 GB/sec 10 GB/sec
wi 8.32 GB/sec 10 GB/sec

Flat buffer Burst buffer
H2 {v1, v2} H2 {1, 1088} H2 {32, 34}
{F1, F2} {2.13 × 10−6, 4.27 × 10−7} {2.13 × 10−6, 7.61 × 10−8}

Checkpoint size per node (D) 5GB
Encoding rate node (e1) 400MB/sec
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Fig. 3 Efficiency of multi-level coordinated and uncoordinated check-
point/restart on a flat buffer system and a burst buffer system

compute nodes.
Failure rates(F) are based on failure analysis using pF3D [8].

The failure analysis shows that average failure rates of a single
compute node requiring LOCAL is 1.96×10−10, XOR is 1.77×10−9,
PFS is 3.93 × 10−10. In a flat buffer system, each failure rate
is calculated by multiplying the each failure rate by the num-
ber of compute nodes, i.e., 1088 nodes. This leads to failure
rates of Failure rate of a single Coastal nodes is We use fail-
ure analysis in 2.14 × 10−7 for LOCAL, 1.92 × 10−6 for XOR,
and 4.27 × 10−7 for PFS. Actually, if a level-i failure rate is
lower than a level-i+ 1 one, the optimal level i checkpoint counts
is zero because level i can be recovery level i + 1 checkpoint,
which is written more frequently than level i. If a compute nodes
failure occurs, a flat buffer system lose checkpoint data on the
failed compute node, so XOR is required to restore the lost check-
point data. Thus, we use 2 level checkpoint/restart where level
1 is XOR, and level 2 is PFS, and each level of failure rate is
{F1, F2} = {2.14 × 10−7 + 1.92 × 10−6, 4.27 × 10−7}.

In a burst buffer system, 34 burst buffer nodes are used, so fail-
ure rate of entire burst buffer nodes is calculated as 6.67 × 10−8,
failure rate requiring PFS as 1.33 × 10−8. Even on a com-
pute nodes failure, a burst buffer nodes can keep checkpoint
data, so LOCAL checkpoint is enough to tolerate a compute node
failure. Thus, we use 2 level checkpoint/restart where level 1
is LOCAL, and level 2 is PFS, and each level of failure rate is
{F1, F2} = {2.14×10−7 +1.92×10−6, 6.28×10−8 +1.33×10−8}
for burst buffer system.

5.2 Results
At extreme systems will be larger, overall failure rates and

checkpoint size are expected to increase. To explore the effects,
we increase failure rates and level 2 checkpoint costs by factors
of 1, 2, 10, 50 and 100, and compare efficiency between multi-
level coordinated and uncoordinated checkpoint/restart on a flat
buffer system and a burst buffer system. We do not change level
1 checkpoint cost, since the performance of flat and burst buffer
is expected to scale with system size.

As Figure 3 shows the efficiency under different failure rates
and checkpoint costs. When we computes the efficiency, we op-
timize level-1 and 2 checkpoint frequency (v1 and v2), and inter-
val between checkpoints (T ) using our multi-level asynchronous
checkpoint/restart model, which yields the maximal efficiency.
The burst buffer system always achieves higher efficiency than
the flat buffer system. The efficiency gap becomes more apparent
with higher failure rates and higher checkpoint cost because the
burst buffer system integrate checkpoints into the fewer number
of burst buffer nodes than compute nodes, which decrease proba-
bility of losing checkpoints, and restarting from a slower PFS.

Table 4 Allowable message logging overhead

Flat buffer Burst buffer
scale factor Allowable message scale factor Allowable message

logging overhead logging overhead
1 0.0232% 1 0.00435%
2 0.0929% 2 0.0175%

10 2.45% 10 0.468%
50 84.5% 50 42.0%
100 ≈ 100% 100 99.9%

The efficiency in Figure 3 does not include message logging
overhead, so validity of uncoordinated checkpoint/restart depends
on degree of message logging overhead. Table 4 shows allowable
message logging overhead. To achieve higher efficiency than co-
ordinated checkpoint/restart, the logging overhead must be below
a few percent in a current and a 10 times scaled system. In sys-
tems whose failure rates and checkpoint costs is 50 times higher
than a current system, uncoordinated checkpoint/restart is neces-
sary even with high logging overhead. By using uncoordinated
checkpoint/restart, we can leverage a burst buffer, and achieve
70% of efficiency even on two order of magnitude larger scale
systems because partial restart of uncoordinated checkpoint can
exploit bandwidth of both burst buffers and a PFS, and accelerate
restart time.

Building a reliable data center or supercomputer, and maxi-
mizing system efficiency are significant given fixed amount of
cost. To explore which tiers of storage can impact system ef-
ficiency improvement, we increase performance of each tier of
storage failure by factors of 1, 2, 10 and 20. Figure 4 shows
efficiency in increasing scale factor of performance of level-1
checkpoint/restart in 100 times scaled systems in Figure 3. As
shown, improvement of flat buffer and burst buffer performance
does not impact the system efficiency. But, as in Figure 5, in-
creasing PFS performance improve the system efficiency, and we
can achieve over 80% efficiency with both coordinated and unco-
ordinated checkpoint/restart on the burst buffer system. The both
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§  Outcome	  

–  Two	  publica'ons	  (PPoPP’15	  and	  PPMM’)	  
–  Sorware	  contribu'on	  to	  the	  MPICH	  library	  
–  Ongoing	  collabora'on	  

Abdelhalim Amer (Halim) 
Postdoctoral Researcher, ANL 



Research and Achievements Summary 

§  Characterizing	  state-‐of-‐the-‐art	  MPI+Threads	  run'mes	  
–  Applica'on	  and	  run'me	  perspec'ves	  
–  Large	  scale	  analysis	  (512K	  cores	  on	  Mira)	  

§  Exposing	  thread-‐synchroniza'on	  issues	  the	  MPI-‐run'me	  
§  Develop	  MPI-‐aware	  thread-‐synchroniza'on	  to	  improve	  run'me	  performance	  

Pros	  and	  Cons	  of	  MPI+Threads	  at	  
Large	  Scale?	  

Run:me	  Conten:on	  in	  
Mul:threaded	  MPI	  due	  to	  

Thread-‐Safety	  	  

Reducing	  Conten:on	  by	  
Improving	  Cri:cal	  Sec:on	  

Arbitra:on	  [ACM	  PPoPP’	  15]	  

Characterizing	  Large	  Scale	  	  MPI	  +	  
Threads	  [PPMM’15]	  
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[ACM	  PPOPP’15]	  Abdelhalim	  Amer,	  Huiwei	  Lu,	  Yanjie	  Wei,	  Pavan	  Balaji	  and	  
Satoshi	  Matsuoka.	  MPI+Threads:	  Run:me	  Conten:on	  and	  Remedies.	  ACM	  
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[PPMM’15]	  Abdelhalim	  Amer,	  Huiwei	  Lu,	  Pavan	  Balaji,	  and	  Satoshi	  Matsuoka.	  
Characterizing	  MPI	  and	  Hybrid	  MPI+Threads	  Applica:ons	  at	  Scale:	  Case	  Study	  with	  
BFS.	  Workshop	  on	  Parallel	  Programming	  Model	  for	  the	  Masses	  (PPMM)	  



This small, synthetic graph was 
generated by a method called 
Kronecker multiplication. (Jeremiah 
Willcock, Indiana University) 

Large-Scale MPI+Threads Graph Analytics 
Characterization on BG/Q [PPMM’15] 
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Communication Progress and Thread-Synchronization: 
Beware of Unbounded-Unfairness [PPoPP’15]  

§  FIFO	  locks	  overcome	  the	  
shortcomings	  of	  mutexes	  

§  Polling	  for	  progress	  can	  be	  wasteful	  
(wai:ng	  does	  not	  generate	  work!)	  

§  Priori'zing	  issuing	  opera'ons	  
•  Feed	  the	  communica'on	  pipeline	  
•  Reduce	  chances	  of	  wasteful	  internal	  

process	  (e.g.	  more	  requests	  on	  the	  fly	  
è	  higher	  chances	  of	  making	  
progress)	  
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Insightul	  Analysis	  of	  Performance	  Metrics	  on	  
Fat-‐tree	  Networks[Kevin	  Brown,	  ICPADS15]	  
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Profiler	  
Non-‐intrusive	  collec'on	  of	  
performance	  metrics	  w/	  
our	  ibprof	  profiler	  
•  Low	  overhead	  
•  Captures	  links	  traffic	  

Hardware-‐centric	  
traffic	  visualiza'on	  
BoxFish	  for	  FatTree	  

compute	  
nodes	  
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1	  

Tree-‐topology	  viz.	  design	  



Insightul	  Analysis	  of	  Performance	  Metrics	  
on	  Fat-‐tree	  Networks	  

3	   Tree-‐topology	  viz.	  design	   Adjacency	  matrix	  viz.	  design	  

Each	  element	  represents	  a	  link	  
ü  No	  occlusion	  of	  data	  
ü  Space	  efficient	  design	  
ü  More	  link	  design	  op'ons	  

Square	  

Bisected	  square	  
Triangle	  pair	  

Data	  (traffic,	  load,	  etc.)	  is	  encoded	  in	  the	  size,	  shape,	  color,	  and/or	  hue	  of	  the	  links	  



ibprof’s	  Profiling	  Overhead	  
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Fig. 5. Runtime overhead of communication profiling. Subfigure (5a) shows the percentage increase in communication latency for the various IMB benchmarks.
These results are separated into two charts for increased readability. Subfigure (5b) shows the increase in runtime of NPB kernels and pseudo applications. The
height of each bar represents the overhead as a percentage of the communication runtime and the bars annotation states the actual change in communication
runtime.

2) Increase in Communication Latency: Figure 5 shows the
results of our experiments. These graphs represent the increase
in communication latency caused by our profiler and does not re-
flect the time for dumping profiles. Results were averaged across
all 100 pairs of runs with standard errors <1% in all cases. The
average overhead was 11.6%, 3.4%, and 1.3% for MPI_Bcast,
MPI_Reduce, and MPI_Scatter, respectively, over all
message sizes while other IMB benchmarks averaged below
1% overhead. Similarly, all NPB benchmarks averaged below
1%, with the communication-bound FT benchmark reporting
the highest value of 0.46%.

The averaged runtime differences were in the order of
microseconds for the IMB benchmarks and milliseconds for
the NPB benchmark. Because such small differences could
be attributed to jitters in the system, we ran similar exper-
iments at different times over several days for verification.
Similar trends were observed in the results with some runs
occasionally reporting negative overheads and all overheads
remaining negligible except for spikes in the MPI_Bcast
and MPI_Reduce results for the message sizes shown. We
confirmed that the spike in the MPI_Bcast can be attributed
to Open MPI switching from the send/receive semantics to
RDMA pipeline protocol when the message size surpasses
256 KB. We ran a set of MPI_Bcast trials with the RDMA
pipeline size limit changed from 256 KB to 1 MB and the
pipeline send length changed from 1 MB to 4 MB. As expected,
we observed additional spikes for messages between 1 MB and
4 MB in size. Further research is being planned to ascertain
the cause of this phenomenon.

3) Increase in Application Runtime: The total increase in
application runtime when ibprof is used is equal to the
increase in communication latency plus the time taken to write
profiles. On our system, the time taken for a complete profile
dump was less than 1 seconds, irrespective of the application
or communication pattern. This time is dependent on the IO
subsystem’s performance, which is beyond the scope of this
work.

VI. CASE STUDY

In this Section, we showcase the usability of our profiling
approach and analysis toolchain. We analyze the execution of

samplesort, a popular sorting algorithm for parallel systems,
and we also compare the performance of different MPI library
versions. Experiments were conducted on TSUBAME2.5, which
utilizes two independent IB subnets and each compute node
has a link to each subnet.

A. Visualizing Traffic Patterns and Contention in Samplesort

Samplesort, as described in [19], is a sorting algorithm for
distributed memory environments. The main idea behind the
algorithm is to find a set splitters to partition the input keys into
p buckets corresponding to p processes in such a way that every
element in the i

th bucket is less than or equal to each of the
elements in the (i+ 1)th bucket. Because splitters are selected
randomly, the resulting bucket sizes may be uneven. This could
result in communication and computation imbalances when
keys are shuffled and sorted, respectively.

For our experiment, we used the samplesort code presented
in [19] 1. We executed samplesort with 128 MPI processes,
using a 1:1 process-to-node mapping. Each process started
with 1 GB of unsorted integers, randomly generated with a
uniform distribution. The same random number seed was
used in all cases. Fig. 6 shows a typlical process-centric
visualization of samplesort’s main communication routines over
128 nodes using Paraver. We are unable to extract any network
performance insights from this and other similar visualizations
that are generated using PMPI-based instrumentation tools.

1) Performance Analysis using our ibprof Profiler and
our Boxfish Module: We profiled an execution of samplesort
using ibprof and visualized the network traffic in our
Boxfish fat tree module. Segments of the code were manually
instrumented to enable the identification of the code block
where the all-to-all key exchange is conducted in order to
perform a meaningful analysis. Fig. 7 shows the network traffic
generated by the main communication routines of samplesort.
This section of the profile reflects the traffic generated by the
segment of the program highlighted in Fig. 6.

The red links that are visible in area C of Fig. 7 represent
links that were carrying the most traffic during the commu-
nication block of the code. By exploring the visualization

1Source code: http://users.ices.utexas.edu/˜hari/talks/hyksort.html

21 25 210 215 220 223

0

20

40

60

80

100

Message Size (bytes)

O
ve

rh
ea

d
(%

)

bcast
reduce
ping-pong

21 25 210 215 220 223

�2

0

2

4

6

8

10

Message Size (bytes)

alltoall scatter
gather allgather
allreduce

(a) Intel MPI Bencharmark

ft is cg mg bt sp lu

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

-32ms

56ms

0.3ms

-39ms

14ms
47ms 58ms

Kernels & Psuedo Apps

kernel

pseudo app

(b) NAS Parallel Benchmarks

Fig. 5. Runtime overhead of communication profiling. Subfigure (5a) shows the percentage increase in communication latency for the various IMB benchmarks.
These results are separated into two charts for increased readability. Subfigure (5b) shows the increase in runtime of NPB kernels and pseudo applications. The
height of each bar represents the overhead as a percentage of the communication runtime and the bars annotation states the actual change in communication
runtime.

2) Increase in Communication Latency: Figure 5 shows the
results of our experiments. These graphs represent the increase
in communication latency caused by our profiler and does not re-
flect the time for dumping profiles. Results were averaged across
all 100 pairs of runs with standard errors <1% in all cases. The
average overhead was 11.6%, 3.4%, and 1.3% for MPI_Bcast,
MPI_Reduce, and MPI_Scatter, respectively, over all
message sizes while other IMB benchmarks averaged below
1% overhead. Similarly, all NPB benchmarks averaged below
1%, with the communication-bound FT benchmark reporting
the highest value of 0.46%.

The averaged runtime differences were in the order of
microseconds for the IMB benchmarks and milliseconds for
the NPB benchmark. Because such small differences could
be attributed to jitters in the system, we ran similar exper-
iments at different times over several days for verification.
Similar trends were observed in the results with some runs
occasionally reporting negative overheads and all overheads
remaining negligible except for spikes in the MPI_Bcast
and MPI_Reduce results for the message sizes shown. We
confirmed that the spike in the MPI_Bcast can be attributed
to Open MPI switching from the send/receive semantics to
RDMA pipeline protocol when the message size surpasses
256 KB. We ran a set of MPI_Bcast trials with the RDMA
pipeline size limit changed from 256 KB to 1 MB and the
pipeline send length changed from 1 MB to 4 MB. As expected,
we observed additional spikes for messages between 1 MB and
4 MB in size. Further research is being planned to ascertain
the cause of this phenomenon.

3) Increase in Application Runtime: The total increase in
application runtime when ibprof is used is equal to the
increase in communication latency plus the time taken to write
profiles. On our system, the time taken for a complete profile
dump was less than 1 seconds, irrespective of the application
or communication pattern. This time is dependent on the IO
subsystem’s performance, which is beyond the scope of this
work.

VI. CASE STUDY

In this Section, we showcase the usability of our profiling
approach and analysis toolchain. We analyze the execution of

samplesort, a popular sorting algorithm for parallel systems,
and we also compare the performance of different MPI library
versions. Experiments were conducted on TSUBAME2.5, which
utilizes two independent IB subnets and each compute node
has a link to each subnet.

A. Visualizing Traffic Patterns and Contention in Samplesort

Samplesort, as described in [19], is a sorting algorithm for
distributed memory environments. The main idea behind the
algorithm is to find a set splitters to partition the input keys into
p buckets corresponding to p processes in such a way that every
element in the i

th bucket is less than or equal to each of the
elements in the (i+ 1)th bucket. Because splitters are selected
randomly, the resulting bucket sizes may be uneven. This could
result in communication and computation imbalances when
keys are shuffled and sorted, respectively.

For our experiment, we used the samplesort code presented
in [19] 1. We executed samplesort with 128 MPI processes,
using a 1:1 process-to-node mapping. Each process started
with 1 GB of unsorted integers, randomly generated with a
uniform distribution. The same random number seed was
used in all cases. Fig. 6 shows a typlical process-centric
visualization of samplesort’s main communication routines over
128 nodes using Paraver. We are unable to extract any network
performance insights from this and other similar visualizations
that are generated using PMPI-based instrumentation tools.

1) Performance Analysis using our ibprof Profiler and
our Boxfish Module: We profiled an execution of samplesort
using ibprof and visualized the network traffic in our
Boxfish fat tree module. Segments of the code were manually
instrumented to enable the identification of the code block
where the all-to-all key exchange is conducted in order to
perform a meaningful analysis. Fig. 7 shows the network traffic
generated by the main communication routines of samplesort.
This section of the profile reflects the traffic generated by the
segment of the program highlighted in Fig. 6.

The red links that are visible in area C of Fig. 7 represent
links that were carrying the most traffic during the commu-
nication block of the code. By exploring the visualization

1Source code: http://users.ices.utexas.edu/˜hari/talks/hyksort.html
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2) Increase in Communication Latency: Figure 5 shows the
results of our experiments. These graphs represent the increase
in communication latency caused by our profiler and does not re-
flect the time for dumping profiles. Results were averaged across
all 100 pairs of runs with standard errors <1% in all cases. The
average overhead was 11.6%, 3.4%, and 1.3% for MPI_Bcast,
MPI_Reduce, and MPI_Scatter, respectively, over all
message sizes while other IMB benchmarks averaged below
1% overhead. Similarly, all NPB benchmarks averaged below
1%, with the communication-bound FT benchmark reporting
the highest value of 0.46%.

The averaged runtime differences were in the order of
microseconds for the IMB benchmarks and milliseconds for
the NPB benchmark. Because such small differences could
be attributed to jitters in the system, we ran similar exper-
iments at different times over several days for verification.
Similar trends were observed in the results with some runs
occasionally reporting negative overheads and all overheads
remaining negligible except for spikes in the MPI_Bcast
and MPI_Reduce results for the message sizes shown. We
confirmed that the spike in the MPI_Bcast can be attributed
to Open MPI switching from the send/receive semantics to
RDMA pipeline protocol when the message size surpasses
256 KB. We ran a set of MPI_Bcast trials with the RDMA
pipeline size limit changed from 256 KB to 1 MB and the
pipeline send length changed from 1 MB to 4 MB. As expected,
we observed additional spikes for messages between 1 MB and
4 MB in size. Further research is being planned to ascertain
the cause of this phenomenon.

3) Increase in Application Runtime: The total increase in
application runtime when ibprof is used is equal to the
increase in communication latency plus the time taken to write
profiles. On our system, the time taken for a complete profile
dump was less than 1 seconds, irrespective of the application
or communication pattern. This time is dependent on the IO
subsystem’s performance, which is beyond the scope of this
work.

VI. CASE STUDY

In this Section, we showcase the usability of our profiling
approach and analysis toolchain. We analyze the execution of

samplesort, a popular sorting algorithm for parallel systems,
and we also compare the performance of different MPI library
versions. Experiments were conducted on TSUBAME2.5, which
utilizes two independent IB subnets and each compute node
has a link to each subnet.

A. Visualizing Traffic Patterns and Contention in Samplesort

Samplesort, as described in [19], is a sorting algorithm for
distributed memory environments. The main idea behind the
algorithm is to find a set splitters to partition the input keys into
p buckets corresponding to p processes in such a way that every
element in the i

th bucket is less than or equal to each of the
elements in the (i+ 1)th bucket. Because splitters are selected
randomly, the resulting bucket sizes may be uneven. This could
result in communication and computation imbalances when
keys are shuffled and sorted, respectively.

For our experiment, we used the samplesort code presented
in [19] 1. We executed samplesort with 128 MPI processes,
using a 1:1 process-to-node mapping. Each process started
with 1 GB of unsorted integers, randomly generated with a
uniform distribution. The same random number seed was
used in all cases. Fig. 6 shows a typlical process-centric
visualization of samplesort’s main communication routines over
128 nodes using Paraver. We are unable to extract any network
performance insights from this and other similar visualizations
that are generated using PMPI-based instrumentation tools.

1) Performance Analysis using our ibprof Profiler and
our Boxfish Module: We profiled an execution of samplesort
using ibprof and visualized the network traffic in our
Boxfish fat tree module. Segments of the code were manually
instrumented to enable the identification of the code block
where the all-to-all key exchange is conducted in order to
perform a meaningful analysis. Fig. 7 shows the network traffic
generated by the main communication routines of samplesort.
This section of the profile reflects the traffic generated by the
segment of the program highlighted in Fig. 6.

The red links that are visible in area C of Fig. 7 represent
links that were carrying the most traffic during the commu-
nication block of the code. By exploring the visualization

1Source code: http://users.ices.utexas.edu/˜hari/talks/hyksort.html

•  All	  NPB	  apps	  averaged	  <	  1%	  	  
•  Peak	  overhead	  occurred	  with	  
MPI_Bcast	  when	  Open	  MPI	  
switched	  from	  send/recv	  to	  RDMA	  

•  All	  other	  collec'ves	  averaged	  <	  5%	  
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Process-‐centric	  Visualiza'ons	  vs.	  Boxfish	  
Fat	  Tree	  Visualiza'on	  

22	  

Paraver	  
Does	  not	  show	  network	  
traffic	  hotspots	  

Boxfish	  
Capable	  of	  highligh'ng	  network	  
hotspots	  and	  traffic	  pazerns	  

Samplesort	  on	  128	  nodes	  of	  TSUBAME2.5	  

vs.	  



Visualizing	  the	  Traffic	  Pazerns	  of	  Different	  
Open	  MPI	  Library	  version	  
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v1.82	  

v1.65	  
Open	  MPI	  v1.65	  balances	  
traffic	  over	  both	  subnets	  
ofTSUBAME2.5	  with	  the	  
default	  configura'on	  

Open	  MPI	  v1.82	  uses	  a	  single	  
subnet	  per	  opera'on	  with	  the	  

default	  configura'ons	  on	  
TSUBAME2.5	  
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Poster	  (Prior	  to	  internship	  but	  using	  LLNL’s	  work):	  
Kevin	  A.	  Brown,	  Jens	  Domke,	  and	  Satoshi	  Matsuoka.	  “Tracing	  
Data	  Movements	  within	  MPI	  Collec>ves”.	  In	  Proceedings	  of	  
the	  21st	  European	  MPI	  Users'	  Group	  Mee'ng	  (EuroMPI/ASIA	  
'14).	  

	  
Paper:	  

Brown,	  K.A.;	  Domke,	  J.;	  Matsuoka,	  S.,	  "Hardware-‐Centric	  
Analysis	  of	  Network	  Performance	  for	  MPI	  Applica>ons”.	  In	  
2015	  IEEE	  21st	  Interna'onal	  Conference	  on	  Parallel	  and	  
Distributed	  Systems	  (ICPADS)	  



Challenges  to  model  a  tree-‐based  irregular  
applica8ons  with  Aspen

Keisuke	  Fukuda	  (Ph.D	  Student)	  
Research	  Internship	  @ORNL	  	  

•  2013	  Sep-‐Nov	  
•  2014	  Oct-‐Nov	  

•  Now	  long-‐term	  intern	  at	  AICS	  2015	  Oct-‐2016	  Sep	  



Challenges  in  modeling  irregular  applica8ons	
•  Performance	  modeling	  of	  applica'on	  is	  used	  to:	  

•  Run'me	  (power,	  memory)	  es'ma'on	  
•  Hardware/machine	  design	  

•  Conven'onal,	  ad-‐hoc	  mathema'cal	  modeling	  is	  not	  suitable	  if	  irregular	  data	  
structure	  (e.g.	  tree)	  and	  control	  flows	  affect	  the	  performance	  

•  How	  to	  model	  such	  applica'ons?	  
•  We	  focus	  on	  the	  Fast	  Mul'pole	  Method	  
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• Applied	  Aspen	  modeling	  language	  to	  FMM	  
•  Run'me	  es'ma'on	  for	  la~ce,	  sphere,	  plummer	  distribu'on,	  
Ncrit	  =	  16〜512	  

•  Es'ma'on	  errror	  was	  7-‐13%	  error	  in	  avg.	  

• Room	  for	  op'miza'on	  for	  find-‐grained	  kernels	  and	  in	  
deriving	  constants	  

• Aspen	  requires	  large	  'me	  and	  memory	  to	  evaluate	  the	  
models	  
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Whole-‐app  model  of  ExaFMM	
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Whole-‐app  model  of  ExaFMM	
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Dynamic Graphs (temporal graph) 
•  the structure of a graph 

changes dynamically over time 
•  many real-world graphs are 

classified into dynamic graph 

•  Most studies for large graphs have not focused on a dynamic 
graph data structure, but rather a static one, such as Graph 500 

•  Even with the large memory capacities of HPC systems, many 
graph applications require additional out-of-core memory  
(this part is still at an early stage) 

Sparse Large Scale-free 
•  social network,  genome 

analysis, WWW, etc. 
•  e.g., Facebook manages 

1.39 billion active users 
as of 2014, with more 
than 400 billion edges 

Distributed Large-Scale Dynamic Graph Data Store  
Keita Iwabuchi1, 2, Scott Sallinen3, Roger Pearce2, 

Brian Van Essen2, Maya Gokhale2, Satoshi Matsuoka1   
1.  Tokyo Institute of Technology (Tokyo Tech) 

2. Lawrence Livermore National Laboratory (LLNL) 
3. University of British Columbia 

Source:	  Jakob	  Enemark	  and	  Kim	  Sneppen,	  “Gene	  duplica'on	  models	  for	  directed	  networks	  
with	  limits	  on	  growth”,	  Journal	  of	  Sta's'cal	  Mechanics:	  Theory	  and	  Experiment	  2007	  



Controller / 
Partitioner 

Comp. 
Node 

Comp. 
Node 

Distributed Dynamic Graph Data 
Store 

share.sandia.gov 

Comp. 
Node 

Graph Application 

Comp. 
Node 

Comp. 
Node 

Developing a distributed dynamic graph store for data intensive 
supercomputers equipped with locally attached NVRAM 

Streaming	  edges	  	  



Degree Aware Dynamic Graph Data Store 
(DegAwareRHH) 

Robin Hood Hashing1 

[1]  P. Celis, “Robin hood hashing,” Ph.D. dissertation, 1986.  Designed to 
maintain a small 
average probe 
distance 

w1 

w5 v1 
p1 

v3 
p3 

w2 

v4 
p4 

w3 

w6 

v2 
p2 

v1 p1 

v2 p2 

v3 p3 

v4 p4 

Vertex-table 

v2 w1 v3 w2 

v4 w3 

v1 w4 v3 w5 

Edge-list 

v: vertex 
p: vertex property data 
w: edge weight 

Vertex-table : tree, hash table 
Edge-list       : vector, linked-list 

v1 v4 
p1 p4 

v1 v3 
w5 w6 

{v2,v4
} 

{v3,v4
} 

p2 p3 
w3 w4 

w4 

Low-‐degree	  
table	  

Mid-‐high	  degree	  table	

DegAwareRHH 
Degree Aware Graph Data Structure 

Each	  table	  is	  
composed	  of	  Robin	  
Hood	  Hashing	

Extend	  DegAwareRHH	  for	  distributed-‐memory	  using	  a	  async.	  
MPI	  communica'on	  framework[2][3]	  
 

•  Degree	  aware	  data	  structures,	  where	  low-‐degree	  ver'ces	  are	  
compactly	  represented	  

•  Use	  Robin	  Hood	  Hashing[1]	  because	  of	  its	  locality	  proper'es	  to	  
minimize	  the	  number	  of	  accesses	  to	  NVRAM,	  reducing	  page	  misses.	  	  

v2 v3 
w1 w2 

Vertex	  ID	  
Vertex	  property	  
Edge	  weight	

[2] R. Pearce, et al, “Scaling techniques for massive scale-free graphs in distributed (external) memory,” 
IPDPS’ 13 
[3] R. Pearce, et al, “Faster parallel traversal of scale free graphs at extreme scale with vertex delegates, 
” SC’ 14 



RMAT 25 graph: #vertices 32M, #edges 1B 

#nodes	  (24	  processes	  per	  node)	

M
ill
io
n	  
Re

qu
es
ts
/s
ec
.	

•  STINGER: a state-of-the-art shared-memory dynamic graph 
processing framework developing at Georgia Tech 

•  Baseline: a baseline model using Boost.Interprocess 
•  DegAwareRHH: our proposed dynamic graph store 

Dynamic	  Large-‐Scale	  Graph	  Construc'on	  (on-‐memory)	

Edge	  inser'on	  and	  dele'on	  
(single	  node,	  24	  threads/processes)	  

total	  #edges:	  1	  billion	  

Edge	  inser'on	  
total	  #edges:	  128	  billion	  

Be
z
er

	

Bi
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on

	  R
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s/
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16x than 
Baseline 

121x than 
STINGER 

over 2 billion 
insertions/

sec. 
overperform
s Baseline 
by 30.69 % 

Due	  to	  a	  skewness	  of	  the	  data	  set	  (RMAT	  
graph),	  DegAwareRHH	  overperforms	  the	  both	  
implementa'ons	  significantly	  	
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Publica'on	  list	  
•  Keita	  Iwabuchi,	  Roger	  A.	  Pearce,	  Brian	  Van	  Essen,	  Maya	  Gokhale,	  Satoshi	  Matsuoka,	  

“Design	  of	  a	  NVRAM	  Specialized	  Degree	  Aware	  Dynamic	  Graph	  Data	  Structure”,	  SC	  
2015	  Regular,	  Electronic,	  and	  Educa'onal	  Poster,	  Interna'onal	  Conference	  for	  High	  
Performance	  Compu'ng,	  Networking,	  Storage	  and	  Analysis	  2015	  (SC	  ’15),	  Nov.	  2015	  

•  Keita	  Iwabuchi,	  Roger	  A.	  Pearce,	  Brian	  Van	  Essen,	  Maya	  Gokhale,	  Satoshi	  Matsuoka,	  
“Design	  of	  a	  NVRAM	  Specialized	  Degree	  Aware	  Dynamic	  Graph	  Data	  Structure”,	  7th	  
Annual	  Non-‐Vola'le	  Memories	  Workshop	  2016,	  Mar.	  2016	  



An	  OpenACC	  Extension	  for	  Data	  Layout	  
Transforma'on	  w/ORNL	  

	  
	  	

Tetsuya	  Hoshino(Ph.D	  Student)	  
Research	  Internship	  @ORNL	  2014	  Sep-‐Nov	  

	  
Now:	  Assistant	  Professor	  @	  Supercompu'ng	  Center,	  

The	  University	  of	  Tokyo	  
	  

	



Why	  the	  extension	  is	  needed?	
•  An	  OpenACC	  program	  can	  be	  

executed	  on	  any	  devices	  
–  mul'-‐core	  CPU,	  Xeon	  Phi,	  GPUs	  

•  OpenACC	  target	  devices	  have	  
different	  performance	  
characteris'cs	  especially	  about	  
memory	  access	  
–  	  ex.	  SoA	  and	  AoS	  

•  Data	  layout	  of	  real-‐world	  
applica'ons	  is	  complicated	  and	  
is	  shared	  in	  the	  whole	  program	  
–  Auto-‐tuning	  is	  required	  
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Viscosity	  and	  Convec:on	  phases	

Intel	  Xeon	  
(6	  core)	  

K20X	  GPU	  

The	  graph	  shows	  the	  result	  of	  manual	  data	  layout	  
transforma'on	  for	  the	  viscosity	  and	  convec'on	  
phases	  of	  a	  real-‐world	  CFD	  applica'on	  UPACS	  	  	  
(Hoshino	  et	  al.	  “CUDA	  vs	  OpenACC:	  Performance	  Case	  Studies	  with	  
Kernel	  Benchmarks	  and	  a	  Memory-‐Bound	  CFD	  Applica'on”,	  CCGrid13)	
 	



An	  OpenACC	  extension	  
#pragma	  acc	  transform	

•  Specifica'on	  

	  
•  Clause	  list	  

–  transpose(	  array_name::transpose_rule	  )	  
•  for	  mul'-‐dimensional	  array	  	  
•  A[Z][Y][X][3]	  →	  A’[3][Z][Y][X]	  	  (transpose	  rule	  ::	  [4,1,2,3])	  

–  redim(	  array_name::redim_rule	  )	  
•  for	  1	  dimensional	  array	  	  
•  B[Z*Y*X*3]	  →	  B’[Z][Y][X][3]	  →	  B’’[3][Z][Y][X]	  (by	  transpose	  clause)	  

–  expand(	  derived_type_array_name	  )	  
•  for	  array	  of	  structures	  
•  C[Z][Y][X].c[3]	  →	  C’[Z][Y][X][3]	  →	  C’’[3][Z][Y][X]	  (by	  transpose	  clause)	  

37	

#pragma	  acc	  transform	  [clause	  [[,]	  clause]	  …]	  new-‐line	  
	  	  	  	  	  	  	  	  	  structured	  block	  



Collaborate	  with	  ORNL	
•  Implement	  the	  direc've	  top	  on	  OpenARC	  that	  is	  an	  Open-‐source	  

OpenACC	  compiler	  developed	  by	  ORNL	  	  
–  Source-‐to-‐Source	  translator	  

•  Input	  :	  Extended	  OpenACC	  program	  	  
•  Output	  :	  OpenACC	  program	  

–  It	  is	  on	  going	  work	  

Our	  Translator	  
	  
	  
	  
	  
	  
	  
	

Extended	  
OpenACC	

.c	 input	
OpenARC	  
generates	  

AST	

analyze	  
direc'ves	  

transform	  
structures	   output	

OpenACC	

.c	



Evaluate	  with	  Himeno	  benchmark	  	  
(27-‐point	  stencil	  program)	

•  Apply	  transpose	  to	  
coefficient	  arrays	  of	  
Himeno	  benchmark	  
–  But	  the	  transforma'on	  is	  

applied	  by	  hands	  
–  Transformed	  program	  is	  

same	  as	  the	  output	  program	  
that	  OpenARC	  should	  output	  

•  Performance	  evalua'on	  
–  CPU	  :	  Original	  is	  the	  best	  
–  GPU	  :	  24%	  up	  
–  MIC	  :	  more	  than	  60%	  down	  

•  Translator	  change	  the	  
coefficient	  mul'dimensional	  
array	  to	  1-‐dimensional	  array,	  
it	  disturbs	  prefetching	  
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Lessons  Learned	

•  Sending	  actual	  Ph.D.	  students	  to	  DoE	  labs	  extremely	  
produc've	  for	  both	  sides	  for	  tangible	  collabra'on	  

•  Tokyo	  Tech	  Ph.D.	  students	  are	  extremely	  good	  and	  well	  
trained	  by	  global	  standards	  –	  they	  usually	  survive	  the	  
filtering	  of	  summer	  interns	  and	  produce	  tangible	  results	  

• Many	  students	  end	  up	  being	  hired	  by	  DoE	  labs.	  Others	  
go	  to	  Japanese	  univ.	  &	  labs,	  etc.	  =>	  great	  talent	  pool	  

•  Some	  administra've	  obstacles,	  esp.	  travel	  and	  funding	  
from	  both	  ends	  –	  need	  more	  flexibility	  in	  purpose,	  
airlines,	  gaps	  in	  travel	  i'nerary,	  etc.	  
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Tokyo	  Tech	  Research	  on	  Big	  Data	  Convergence	  
JST-‐CREST	  “Extreme	  Big	  Data”	  Project	  (2013-‐2018)	

Supercomputers 
Compute&Batch-Oriented 

More fragile 

Cloud　IDC 
Very low BW & Efficiency 
Highly available, resilient 

	

Convergent Architecture (Phases 1~4)  
Large Capacity NVM, High-Bisection NW 

PCB	

TSV Interposer	

High Powered 
Main CPU	

Low 
Power 
CPU	

DRAM	
DRAM	
DRAM	

NVM/
Flash	

NVM/
Flash	

NVM/
Flash	

Low 
Power 
CPU	

DRAM	
DRAM	
DRAM	

NVM/
Flash	

NVM/
Flash	

NVM/
Flash	

2Tbps HBM 
4~6HBM Channels 
1.5TB/s DRAM &  
NVM BW 
 
30PB/s I/O BW Possible 
1 Yottabyte / Year 

EBD System Software 
incl. EBD Object System	
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Large Scale 
Metagenomics	

Massive Sensors and 
Data Assimilation in 
Weather Prediction	

Ultra Large Scale 
Graphs and Social 
Infrastructures	

Exascale Big Data HPC 	

Co-Design	

Future Extreme Big Data Scientific Apps	

Graph	  Store	

EBD	  Bag	
Co-Design	 13/06/06 22:36日本地図

1/1 ページfile:///Users/shirahata/Pictures/日本地図.svg

1000km

K
V
S	

K
V
S	

K
V
S	

EBD	  KVS	  

Cartesian	  Plane	
Co-Design	

Given	  a	  top-‐class	  
supercomputer,	  
how	  fast	  can	  we	  
accelerate	  next	  
genera>on	  big	  
data	  c.f.	  Clouds?	

World-‐leading	  
results:	  
-‐  #1	  Graph	  500	  

2014,	  2015	  
-‐  #1	  Green	  Graph	  

500	  
(TsubameKFC)	  

-‐  GPU	  sort	  scalable	  
to	  ~30Petabyte/s	  
on	  future	  SCs	  

-‐  OSSs	  in	  dev.	  



The	  Graph500	  –	  June	  2014	  and	  June/Nov	  2015	  	  
	  K	  Computer	  #1	  Tokyo	  Tech[EBD	  CREST]	  Univ.	  Kyushu	  

[Fujisawa	  Graph	  CREST],	  Riken	  AICS,	  Fujitsu 

List Rank GTEPS Implementation 

November 2013 4 5524.12  Top-down only 

June 2014 1 17977.05 Efficient hybrid 

November 2014 2 Efficient hybrid 

June/Nov 2015 1 38621.4 Hybrid + Node 
Compression 

*Problem size is 
weak scaling 

“Brain-class” graph 

88,000 nodes, 700,000 
CPU Cores 
1.6 Petabyte mem 
20GB/s Tofu NW 
 

≫ 

LLNL-IBM Sequoia 
1.6 million CPUs 
1.6 Petabyte mem 
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TSUBAME3.0	

2006 TSUBAME1.0 
80 Teraflops, #1 Asia #7 World 
“Everybody’s Supercomputer”	

2010 TSUBAME2.0 
2.4 Petaflops #4 World 

“Greenest Production SC”	

2013 
TSUBAME2.5 

upgrade 
5.7PF DFP /
17.1PF SFP 
20% power 
reduction	

2013 TSUBAME-KFC 
#1 Green 500	

2017 TSUBAME3.0 
15~20PF(DFP) ~4PB/s Mem BW 
9~10GFlops/W power efficiency 
Big Data & Cloud Convergence 

Large Scale Simulation 
Big Data Analytics 

Industrial Apps	2011	  ACM	  Gordon	  Bell	  Prize	

2017	  Q1	  TSUBAME3.0+2.5	  Towards	  Exa	  &	  Big	  Data	  
	

1.   “Everybody’s	  Supercomputer”	  –	  High	  Performance	  (15~20	  Petaflops,	  ~4PB/s	  Mem,	  ~1Pbit/s	  
NW),	  innova:ve	  high	  cost/performance	  packaging	  &	  design,	  in	  mere	  100m2…	  

2.   “Extreme	  Green”	  –	  9~10GFlops/W	  power-‐efficient	  architecture,	  system-‐wide	  power	  control,	  
advanced	  cooling,	  future	  energy	  reservoir	  load	  leveling	  &	  energy	  recovery	  

3.   “Big	  Data	  Convergence”	  –	  Extreme	  high	  BW	  &capacity,	  deep	  memory	  
	  hierarchy,	  extreme	  I/O	  accelera:on,	  Big	  Data	  SW	  Stack	  	  
for	  machine	  learning	  /DNN,	  graph	  processing,	  …	  

4.   “Cloud	  SC”	  –	  dynamic	  deployment,	  container-‐based	  	  
node	  co-‐loca:on	  &	  dynamic	  configura:on,	  resource	  
elas:city,	  assimila:on	  of	  public	  clouds…	  

5.   “Transparency”	  -‐	  full	  monitoring	  &	  	  
user	  visibility	  of	  machine	  
&	  job	  state,	  	  
accountability	  	  
via	  reproducibility	  

43	



Big Data and HPC Convergent Infrastructure 
=> “Big Data & Supercomputing Convergent Center” （Tokyo Tech GSIC）	

•  “Big Data” currently processed managed by domain laboratories => No longer scalable 
•  HPCI HPC Center => Converged HPC and Big Data Science Center 
•  People convergence: domain scientists + data scientists + CS/Infrastructure => Big data science center 
•  Data services including large data handling, big data structures e.g. graphs, ML/DNN/AI services…	

2013 TSUBAME2.5 
Upgrade 

5.7Petaflops 17PF DNN	

2017Q1 TSUBAME3.0+2.5 upgrade 
Green&Big Data 100+PF DNN 

HPCI Leading Machine 
Ultra-fast memory 

network, I/O 
	

Mid-tier 
Parallel FS 

Storage  

Archival 
Long-Term  

Object Store 
 

Big	  Data	  Science	  
Applica'ons	  
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Na:onal	  Labs	  	  
With	  Data	

Present	  old	  style	  data	  science	  
Domain	  labs	  segregated	  data	  facili'es	  

No	  mutual	  collabora'ons	  
Inefficient,	  not	  scalable	  with	  
Not	  enough	  data	  scien'sts	

Convergence	  of	  
top-‐>er	  HPC	  
and	  Big	  Data	  
Infrastructure	

Data	  
Management	  
Big	  Data	  Storage	  
Deep	  Learning	  
SW	  Infrastructure	  
	

Virtual	  Mul>-‐Ins>tu>onal	  Data	  Science	  =>	  People	  Convergence	

Goal 100 Petabytes 

100Gbps	  L2	  
Connec'on	  to	  
commercial	  clouds	

Main	  reason:	  We	  
have	  shared	  
resource	  HPC	  
centers	  but	  no	  

“Data	  Center”	  per	  se	



New  collabora8ons  under  considera8on	
•  Fault	  tolerance	  towards	  exascale	  

•  Modeling	  &	  analyzing	  sor	  errors	  with	  “realis'c”	  	  
machine	  fault	  models	  (Kobayashi)	  

•  General	  system-‐level	  GPU	  checkpoin'ng	  (Suzuki)	  

• Big	  Data	  /	  IoT	  /	  Machine	  Learning-‐AI	  &	  HPC	  Convergence	  
•  Modeling	  deep	  learning	  algorithms	  performance	  (Ooyama)	  
•  Counterpart	  to	  Tokyo	  Tech	  Extreme	  Big	  Data	  (EBD)	  Project	  w/DENSO	  

• Post-‐Moore	  compu'ng	  
•  Programming	  /	  Performance	  modeling	  future	  FPGAs	  (also	  w/Riken	  
AICS	  Naoya	  Maruyama	  (Hamid)	  

•  FLOPS	  to	  BYTES	  –	  from	  compute	  intensive	  to	  bandwidth/capacity	  
intensive	  compu'ng	  (w/Kengo	  Nakajima,	  Toshio	  Endo	  et.	  al.)	  

• ADAC	  (Accelerated	  Data	  Analy'cs	  and	  Compu'ng)	  Ins'tute	  –	  
ORNL	  –	  ETH/CSCS	  –	  Tokyo	  Tech	  GSIC	  

To	  be	  
presented	  @	  
DoE/MEXT	  
workshop)	


